cho tam giác ABC vuông tại A phân giác BD kẻ DE vuông góc với BC (E thuộc BC)trên tia đối của AB lấy điểm F sao cho AF =CE. chứng minh rằng
a, BD là đường trung trực của AE
b, AD nhỏ hơn DC
c, ba điểm E, D, F thẳng hàng
Cho tam giác ABC vuông, góc A bằng 90 độ, phân giác BD. Kẻ DE vuông góc với BC "E thuộc BC". Trên tia đối của tia AB lấy điểm F sao cho AF=CE. Chứng minh rằng:
a.BD là đường trung trực của AE
b. Ba điểm E, D, F thẳng hàng
c. AD<DC
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ DE vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng: a) BD là đường trung trực của AE. b) AD<DC c) Ba điểm E, D, F thẳng hàng
C2
Xét tam giác ADF và tam giác EDC có :
DA = DE ( Cmt )
DEF = DEC
AF = EC ( Cmt )
=) ........ ( c.g.c )
=) ADF = EDC ( ...)
mà : EDC + EDA = 180 ĐỘ
=) EDA + ADF = 180 độ
=) E D F thẳng hàng
k cko mk ddi
Gửi Tôn Hà Vy
a) CM BD là đường trung trực của AE
Xét tam giác ABD ( góc A = 90 độ ) và tam giác BDE ( góc E = 90 độ ) có :
góc ABD = góc DBE ( vì BD là p/giác )
BD là cạnh chung
=) tam giác ABD = tam giác BDE ( ch - gn )
AB = BE ( hai cạnh tương ứng )AD = DE ( hai cạnh tương ứng )Ta có :
AB = BE ( Cmt )
=) B thuộc đường trung trực của tam giác ABC (1)
AD = DE ( Cmt )
=) D thuộc đường trung trực của tam giác ABC (2)
Từ (1) và (2)
=) BD là đường trung trực của AE
b) CM AD<DC
Xét tam giác vuông DEC có :
DC là cạnh huyền
=) DC là cạnh lớn nhất
=) DC > DE
mà DE = AD ( Cmt )
=) AD < DC
c) CM Ba điểm E, D, F thẳng hàng
Xét tam giác AFC có :
đường cao FE và đường cao CA đi qua D
=) D là trực tâm của tam giác AFC
=) E D F thẳng hàng
C2
Xét tam giác ADF và tam giác EDC có :
DA = DE ( Cmt )
Bài 3:Cho tam giác ABC vuông tại A, phân giác BD. Kẻ DE vuông góc với BC (E thuộc Bc). Trên tia đối của tia AB lấy điểm F sao cho À = CE. Chứng minh:
a)BD là đướng trung trực của AE b) AD < DC
c) Ba điểm E,D,F thẳng hàng.
Bài 3:Cho tam giác ABC vuông tại A, phân giác BD. Kẻ DE vuông góc với BC (E thuộc Bc). Trên tia đối của tia AB lấy điểm F sao cho À = CE. Chứng minh:
a)BD là đướng trung trực của AE b) AD < DC
c) Ba điểm E,D,F thẳng hàng.
Cho tam giác ABC vuông tại A, đường phân giác BD (D thuộc AC) . Kẻ DE vuông BC (E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng: a) tam giác ABD =tam giác EBD b) BD là đường trung trực của đoạn thẳng AE; c) tam giác DCF là tam giác cân
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên BA=BE và DA=DE
Ta có: BA=BE
nên B nằm trên đường trung trực của AE\(\left(1\right)\)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE
c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
AF=EC
Do đó: ΔADF=ΔEDC
Suy ra: DF=DC
hay ΔDFC cân tại D
Cho tam giác ABC vuông tại A, đường phân giác BD (D thuộc AC) . Kẻ DE vuông BC (E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng: a) tam giác ABD =tam giác EBD b) BD là đường trung trực của đoạn thẳng AE; c) tam giác DCF là tam giác cân d) AD<AC
Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc BC (E thuộc BC).Trên tia đối của tia AB lấy điểm F sao cho AF=CE. Chứng minh
a/ Tam giác ABD=tam giác EBD
b/ BD là đường trung trực của đoạn thẳng AE
c/ AD<DC
d/ Góc ADF=góc EDC và E,D,F thẳng hàng
Bài 14. Cho tam giác ABC vuông tại A, phân giác BD, kẻ DE vuông góc với BC tại E. Trên tia đối của tia AB lấy F sao cho AF — CE. CMR:
a) AABD AEBD
b) BD là đường trung trực của AE
c) AD < DC.
d) E, D, F thẳng hàng và BD LCF.
e) 2(AD+AF) > CF.
Cho tam giác ABC vuông tại A, Phân giác BD . Kẻ DE = BC (E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a,Chứng minh BD là đường trung trực của AE
b,Chứng minh AD < DC
c,Chứng minh 3 điểm E, D, F thẳng hàng.(Vẽ hình hộ nha : 3)
Ê có bạn nào trả lời ko ? Tớ cần gấp lắm !
Cho tam giác ABC vuông góc tại A , kẻ BD là tia phân giác của góc ABC , ( D thuộc AC ). Trên cạnh BC lấy điểm E sao cho BE=BA.
a )chứng minh DE = AD
b.) trên tia đối của tia AB lấy điểm F sao cho AF = CE chứng minh BD vuông góc EFc ) chứng minh AE //FC
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do dó: ΔBAD=ΔBED
=>DA=DE
b: Sửa đề: BD vuông góc với AE
Ta có: BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF