Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Minh Tiến
Xem chi tiết
Tuyển Trần Thị
27 tháng 6 2017 lúc 18:40

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)    \(\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1\ge\frac{9}{2}\) 

\(\Leftrightarrow\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\) 

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)

\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\) 

thật vậy\(2\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\) =\(\left[\left(b+c\right)+\left(a+c\right)+\left(a+b\right)\right]\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\) (ÁP DỤNG BẤT ĐẲNG THỨC COSI) 

ĐẲNG THỨC CUỐI ĐÚNG SUY RA ĐẲNG THỨC ĐẦU ĐƯỢC CHỨNG MINH

Ca Nhin
Xem chi tiết
Vũ Minh Tiến
Xem chi tiết
Vũ Tri Hải
27 tháng 6 2017 lúc 22:15

ta có \(\frac{a^3}{b}+ab\ge2a^2\)

do đó VT +(ab + bc + ca) \(\ge2a^2+2b^2+2c^2\)

hay VT \(\ge2a^2+2b^2+2c^2-\left(ab+bc+ca\right)\ge a^2+b^2+c^2\) (đpcm).

Võ Quang Huy
Xem chi tiết
Nguyễn Linh Chi
21 tháng 3 2019 lúc 23:05

Câu hỏi của Trần Thị Thùy Linh 2004 - Toán lớp 8 - Học toán với OnlineMath

EM tham khảo nhé!

Võ Quang Huy
21 tháng 3 2019 lúc 23:12

Thank you chụy

Nguyễn Linh Chi
21 tháng 3 2019 lúc 23:21

Tham khảo bài cô làm nhé! Bài của bạn làm một số chỗ chưa đúng!

Cao Thành Lộc
Xem chi tiết
QuocDat
1 tháng 7 2018 lúc 15:55

Chứng minh phải k bạn 

\(\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}\)

Thay a=b+c ta có : \(\frac{\left(b+c+b\right)\left[\left(b+c\right)^2-ab+b^2\right]}{\left(b+c+c\right)\left[\left(b+c\right)^2-ab+b^2\right]}\)

\(\frac{\left(2b+c\right)\left(b^2+2bc+c^2-ab+b^2\right)}{\left(b+2c\right)\left(b^2+2bc+c^2-ab+b^2\right)}\)

Đặt b+c=a lại : \(\frac{2b+c}{b+2c}=\frac{a+b}{b+c}\)\(\Leftrightarrow\frac{\left(a+b\right)\left(2b^2+2bc+c^2-ab\right)}{\left(b+c\right)\left(2b^2+2bc+c^2-ab\right)}\)

\(=\frac{a+b}{b+c}\)

=> đpcm

Cao Thành Lộc
1 tháng 7 2018 lúc 16:00

Bạn ơi \(\frac{a+b}{a+c}mà\)chứ đâu phải \(\frac{a+b}{b+c}\)

QuocDat
1 tháng 7 2018 lúc 16:20

Sửa lại khúc cuối chuyển sai ==

Đặt lại b+c=a ta có : \(\frac{ab+c}{b+2c}=\frac{a+b}{a+c}\Leftrightarrow\frac{\left(a+b\right)\left(2b^2+2bc+c^2-ab\right)}{\left(a-c\right)\left(2b^2+2bc+c^2-ab\right)}\)

\(=\frac{a+b}{a-c}\) => đpcm

Hồ Thị Sao
Xem chi tiết
Trần Hoàng Uyên Nhi
Xem chi tiết
alibaba nguyễn
16 tháng 11 2016 lúc 22:30

Bài này làm cũng dài lắm. Mai mình làm cho

Nguyễn Võ Hoài Thương
Xem chi tiết
Hoàng Thanh Mai
13 tháng 11 2016 lúc 16:40

a) =a2b - ab2 + b2c - bc2 + a2c - ac2

= abc +a2b - ab2 +b2c - bc2 +a2c - ac2 - abc

= (a2b - abc) - (ab2 - b2c) - (bc2 - ac2) - (a2c - abc)

= ab(a - c) - b2(a - c) - c2(b - a) - ac(a - b)

= [ab(a - c) - b2(a - c)] + [c2(a - b) - ac(a - b)]

= (a - c)(ab - b2) + (a - b)(c2 - ac)

= b(a - c)(a - b) + c(a - b)(c - a)

= b(a - c)(a - b) - c(a - b)(a - c)

= (a - c)(a - b)(b - c)

b)= ab2 - ac2 + bc2 - a2b + a2c - b2c

= abc + ab2 - ac2 + bc2 - a2b + a2c - b2c - abc

= (ab2 - abc) + (abc - ac2) - (b2c - bc2) - (a2b - a2c)

= ab(b - c) + ac( b - c) - bc(b - c) - a2(b - c)

= (b - c)(ab + ac - bc - a2)

= (b - c) [(ab - bc) + (ac - a2)]

= (b - c) [b(a - c) +a(c - a)]

= (b - c) [b(a - c) - a(a - c)]

= (b - c)(a - c)(b - a)

c) = ab3 - ac3 + bc3 - a3b + a3c - b3c

= a2bc + ab2c + abc2 + a3b + a2b2 + a2bc - a3c - a2bc - a2c2 + a2c2 + abc2 + ac3 - a2b2

- ab3 - ab2c + ab2c + b3c + b2c2 - abc2 - b2c2 - bc3 - a2bc - ab2c - abc2

= (a2bc + ab2c + abc2) +(a3b + a2b2 + a2bc) - (a3c - a2bc - a2c2) +(a2c2 + abc2 +ac3) -

(a2b2 + ab3 + ab2c) + (ab2c + b3c + b2c2) - (abc2 + b2c2 + bc3) - (a2bc + ab2c + abc2)

= abc(a + b + c) +a2b(a + b + c) - a2c(a + b + c) + ac2(a + b + c) - ab2(a + b + c) + b2c(a + b + c) - bc2(a + b + c) - abc(a + b+ c)

= (a +b +c)(abc + a2b - a2c + ac2 - ab2 + b2c - bc2 - abc)

= (a + b+ c) [(a2b - abc)+(abc - bc2) - (a2c - ac2) - (ab2 - b2c)]

= (a + b + c) [ab(a - c) + bc(a - c) - ac(a - c) - b2(a - c)]

= (a + b + c)(a - c)(ab + bc - ac - b2)

= (a +b + c)(a - c) [(ab - ac) - (b2 - bc)]

= (a + b+ c)(a - c) [a(b - c) - b(b - c)]

= (a + b + c)(a - c)(b - c)(a - b)

 

 

Nguyễn Thảo Linh
Xem chi tiết