Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Bích Ngọc
Xem chi tiết
Nguyễn Thị Bích Ngọc
Xem chi tiết
Dũng Lê Trí
10 tháng 6 2017 lúc 16:15

\(xy\left(x-2\right)\left(y-2\right)=4\)

\(\left(x^2-2x\right)y^2+\left(4x-2x^2\right)y=4\)

\(\Rightarrow\left(x^2-2x\right)y^2+\left(4x-2x^2\right)y-4=0\)

\(\left(x^2-2x\right)y^2+\left(-2x^2+4xy\right)y-4=0\)

\(\Rightarrow\left(x^2-2x\right)\left(y^2-2y\right)=4\)

\(\Rightarrow y\left(y-2\right)=\frac{4}{x-\left(x-2\right)}\)

Dũng Lê Trí
10 tháng 6 2017 lúc 16:19

\(\left(x-2\right)\ne0\)

\(\Leftrightarrow\orbr{y=\frac{x^2-\sqrt{x^4-4x^3+8x^2-8x-2x}}{x^2-2x}}\)

Thắng Nguyễn
10 tháng 6 2017 lúc 17:00

trẻ trâu ko biết đừng spam

phi tue minh
Xem chi tiết
ka tran
Xem chi tiết
ST
1 tháng 7 2018 lúc 20:09

1/

Ta có: \(x-y=xy\Rightarrow x=xy+y=y\left(x+1\right)\Rightarrow x:y=x+1\left(y\ne0\right)\)

Mà x - y =  x:y

\(\Rightarrow x-y=x+1\Rightarrow-y=1\Rightarrow y=-1\)

Thay y = -1 vào x - y = xy ta được:

\(x-\left(-1\right)=x.\left(-1\right)\Rightarrow x+1=-x\Rightarrow2x=-1\Rightarrow x=\frac{-1}{2}\)

Vậy...

2/ tương tự bài 1    x = 1/2, y = -1

Momozono Nanami
Xem chi tiết
nguyen hoang phi hung
Xem chi tiết
Đặng Nguyễn Thu Giang
7 tháng 4 2016 lúc 15:05

1. (x;y;z) = (2;2;2) . Đó là hpt đối xứng

2.(x;y;z) = (1;1;1) . Đây cũng là hpt đối xứng

Chi Duyên
Xem chi tiết
Shilosuke
Xem chi tiết
Ninh Đức Huy
4 tháng 6 2019 lúc 19:18

A=x^4+y^4-xy\(-\left(x^2y^2+7xy-9\right)\)

A=\(\left(x^2+y^2\right)^2-2x^2y^2-xy\)

A=\(\left(3-xy\right)^2-2x^2y^2-xy\)

A=\(-\left(x^2y^2+7xy-9\right)\)

A=\(-\left(x^2y^2+6xy+9+xy-18\right)\)

A=\(-\left(xy+3\right)^2-xy+18\)

Đến đây đánh giá xy

Có x^2+y^2+xy=3

hay (x+y)^2=3+xy

suy ra xy+3>=0

hay xy>=-3

Như vậy A<=21

Dấu bằng xảy ra khi x=\(\sqrt{3}\),y=\(-\sqrt{3}\)

Chúc bạn học tốt

Đạt Trần
Xem chi tiết
Hồng Phúc
17 tháng 4 2021 lúc 12:13

1.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}\\x^4+y^2+xy\left(1+2x\right)=-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y\right)+xy+xy\left(x^2+y\right)=-\dfrac{5}{4}\\\left(x^2+y\right)^2+xy=-\dfrac{5}{4}\end{matrix}\right.\left(1\right)\)

Đặt \(\left\{{}\begin{matrix}x^2+y=a\\xy=b\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a+b+ab=-\dfrac{5}{4}\\a^2+b=-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-a^2-\dfrac{5}{4}-a\left(a^2+\dfrac{5}{4}\right)=-\dfrac{5}{4}\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a^3-\dfrac{1}{4}a=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a\left(a^2-a+\dfrac{1}{4}\right)=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\left(a-\dfrac{1}{2}\right)^2=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=0\\xy=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt[3]{10}}{2}\\y=-\dfrac{5}{2\sqrt[3]{10}}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=\dfrac{1}{2}\\xy=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)

Kết luận: Phương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(\dfrac{\sqrt[3]{10}}{2};-\dfrac{5}{2\sqrt[3]{10}}\right);\left(1;-\dfrac{3}{2}\right)\right\}\)

Nguyễn Việt Lâm
17 tháng 4 2021 lúc 12:41

2.

\(\left\{{}\begin{matrix}\left(x+1\right)^3-16\left(x+1\right)=\left(\dfrac{2}{y}\right)^3-4\left(\dfrac{2}{y}\right)\\1+\left(\dfrac{2}{y}\right)^2=5\left(x+1\right)^2+5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+1=u\\\dfrac{2}{y}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^3-16u=v^3-4v\\v^2=5u^2+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u^3-v^3=16u-4v\\4=v^2-5u^2\end{matrix}\right.\)

\(\Rightarrow4\left(u^3-v^3\right)=\left(16u-4v\right)\left(v^2-5u^2\right)\)

\(\Leftrightarrow21u^3-5u^2v-4uv^2=0\)

\(\Leftrightarrow u\left(7u-4v\right)\left(3u+v\right)=0\Rightarrow\left[{}\begin{matrix}u=0\Rightarrow v^2=4\\u=\dfrac{4v}{7}\Rightarrow4=v^2-5\left(\dfrac{4v}{7}\right)^2\\v=-3u\Rightarrow4=\left(-3u\right)^2-5u^2\end{matrix}\right.\) 

\(\Rightarrow...\)