Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nghi Nguyễn
Xem chi tiết
Đinh Công Dũng
17 tháng 4 2022 lúc 16:55
Cố gắng hơn nữa
Xem chi tiết
Hảải Phongg
Xem chi tiết
Luong Ngoc Quynh Nhu
22 tháng 1 2017 lúc 11:47

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

Hảải Phongg
22 tháng 1 2017 lúc 20:00

giải zõ hộ

Mai Thanh Hoàng
Xem chi tiết
Mai Ánh Tuyết
Xem chi tiết
Fire Sky
Xem chi tiết
Ahwi
24 tháng 6 2019 lúc 21:40

\(2x^4-2x^2y+y^2-64=0.\)

\(x^4+x^4-2x^2y+y^2-64=0.\)

\(\left(x^4-2x^2y+y^2\right)+x^4-64=0.\)

\(\left(x^2-y\right)^2+x^4-64=0.\)

\(\left(x^2-y\right)^2+x^4=64.\)

Có \(\left(x^2-y\right)^2\ge0\)

mafk \(\left(x^2-y\right)^2+x^4=64.\)

\(\Rightarrow x^4\le64.\)

\(\Rightarrow x^2\le8\)

Từ đó xét tiếp 

An Vy
Xem chi tiết
Nguyễn Trà My
Xem chi tiết
Võ Hạnh Huy
8 tháng 9 2015 lúc 19:04

2x² + 2y² + 2xy -2x + 2y + 2 = 0

<=>x2+2xy+y2+x2-2x+1+y2+2y+1=0

<=>(x+y)2+(x-1)2+(y+1)2=0

<=>x-1=0 và y-1=0

<=>x=1 và y=-1

 

Nguyễn Như Quỳnh
Xem chi tiết
Lê Song Phương
28 tháng 6 2023 lúc 7:25

a) \(x^2-3xy+3y^2=3y\)

Rõ ràng \(x⋮y\) nên đặt \(x=ky\left(k\inℤ\right)\). Pt trở thành:

\(k^2y^2-3ky^2+3y^2=3y\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\k^2y-3ky+3y=3\end{matrix}\right.\).

Khi \(y=0\) \(\Rightarrow x=0\).

Khi \(k^2y-3ky+3y=3\)

\(\Leftrightarrow y\left(k^2-3k+3\right)=3\)

Ta lập bảng giá trị:

\(y\) 1 3 -1 -3
\(k^2-3k+3\) 3 1 -3 -1
\(k\) 0 hoặc 3 1 hoặc 2 vô nghiệm vô nghiệm
\(x\) 0 (loại) hoặc 3 (nhận) 3 (nhận) hoặc 6 (nhận)    

Vậy pt đã cho có các nghiệm \(\left(0;0\right);\left(3;1\right);\left(3;3\right);\left(6;3\right)\)

b) \(x^2-2xy+5y^2=y+1\)

\(\Leftrightarrow x^2-2yx+5y^2-y-1=0\)

\(\Delta'=\left(-y\right)^2-\left(5y^2-y-1\right)\) \(=-4y^2+y+1\)

Để pt đã cho có nghiệm thì \(-4y^2+y+1\ge0\), giải bpt thu được \(\dfrac{1-\sqrt{17}}{8}\le y\le\dfrac{1+\sqrt{17}}{8}\). Mà lại có \(-1< \dfrac{1-\sqrt{17}}{8}< 0< \dfrac{1+\sqrt{17}}{8}< 1\) nên suy ra \(y=0\). Từ đó tìm được \(x=\pm1\). Vậy pt đã cho có các nghiệm \(\left(1;0\right);\left(-1;0\right)\)

Lê Ng Hải Anh
Xem chi tiết
alibaba nguyễn
16 tháng 1 2019 lúc 8:51

\(x^2+2xy+y^2+3y-4=0\)

\(\Rightarrow\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)

\(\Leftrightarrow-4\le y\le1\)

cao van duc
16 tháng 1 2019 lúc 18:10

\(\left(x+y\right)^2+\left(y-\frac{3}{2}\right)^2=4\)

mà 4=0^2+2^2

=>\(\orbr{\begin{cases}\hept{\begin{cases}x+y=0\\y-\frac{3}{2}=2\end{cases}}\\\hept{\begin{cases}x+y=2\\y-\frac{3}{2}=0\end{cases}}\end{cases}}\)

=> giải nốt

Pham Van Hung
16 tháng 1 2019 lúc 18:57

\(x^2+2y^2+2xy+3y-4=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2+3y+\frac{9}{4}\right)-\frac{25}{4}=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y+\frac{3}{2}\right)^2=\frac{25}{4}\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(2y+3\right)^2=25\)

Ta có 4 trường hợp: 

TH1: \(\hept{\begin{cases}2x+2y=0\\2y+3=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

TH2: \(\hept{\begin{cases}2x+2y=0\\2y+3=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)

TH3: \(\hept{\begin{cases}2x+2y=4\\2y+3=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=-3\end{cases}}\)

TH4: \(\hept{\begin{cases}2x+2y=4\\2y+3=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)

TH5: \(\hept{\begin{cases}2x+2y=-4\\2y+3=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

TH6: \(\hept{\begin{cases}2x+2y=-4\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=0\end{cases}}\)