Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quynh Anh Quach
Xem chi tiết
need help
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 5 2023 lúc 11:02

A=3(x^2+2/3x-1)

=3(x^2+2*x*1/3+1/9-10/9)

=3(x+1/3)^2-10/3>=-10/3

Dấu = xảy ra khi x=-1/3

\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)

Dấu = xảy ra khi x=-1/2

Phạm Minh Quang
Xem chi tiết
Văn Phi Hiếu
Xem chi tiết
Huy Nguyễn Đức
2 tháng 5 2017 lúc 19:33

3A=3(x^2-x+1)/(x^2+x+1)

3A-1=(3x^2-3x+3)/(x^2+x+1)-1

3A-1=(3x^2-3x+3-x^2-x-1)/(x^2+x+1)

3A-1=(2x^2-4x+2)/(x^2+x+1)

3A-1=2(x-1)^2/(x^2+x+1)>=0

=>3A>=1

A>=1/3

=>GTNN của A là 1/3 khi x-1=0 hay x=1 

A-3=(x^2-x+1)/(x^2+x+1)-3

A-3=(x^2-x+1-3x^2-3x-3)/(x^2+x+1)

A-3=(-2x^2-4x-2)/(x^2+x+1)

A-3=-2(x+1)^2/(x^2+x+1)<=0

=>A<=3

=>GTLN của A=3 khi x=-1 

Văn Phi Hiếu
9 tháng 5 2017 lúc 22:52

con H=(x^2+x+1)/(x^2-x+1)

dảke
Xem chi tiết
Huyền Lưu
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

Alicia
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 20:48

a: Ta có: \(A=x^2+3x+4\)

\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)

Lê Thị Thanh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2021 lúc 19:12

c: \(=\left(x+1\right)^2+1>0\forall x\)

Quỳnh Anh
5 tháng 2 2022 lúc 22:57

Trả lời:

a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTNN của biểu thức bằng 2 khi x = 3

b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)

\(=-\left(x-3\right)^2-2\le-2\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTLN của biểu thức bằng - 2 khi x = 3

c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\)  (đpcm)

Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1

Khách vãng lai đã xóa
Cường Bảo
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 7 2018 lúc 4:21

Tập xác định R.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Ta có bảng biến thiên:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số không có GTLN trên R . Chọn đáp án C.