Chứng tỏ rằng \(x=0;x=-\dfrac{1}{2}\) là các nghiệm của đa thức \(5x+10x^2\)
Cho đa thức Q(x)=ax^2+bx+c
a) biết 5a+b+2c=0 . Chứng tỏ rằng Q(x).Q(-1) < hoặc = 0
b) biết Q(x)=0 với mọi x . Chứng tỏ rằng a=b=c=0
a, Chứng tỏ rằng nếu a + b + c = 0 thì x = 1 là một nghiệm của đa thức P(x) = ax2 + bx + c
b, Chứng tỏ rằng nếu a – b + c = 0 thì x = -1 là một nghiệm của đa thức Q(x) = ax2 + bx + c
$\rm x=1\\\to ax^2+bx+c=a+b+c=0\\\to x=1\,\là \,\,no \,\pt$
Cho đa thức Q(x)=ax^2+bx+c
a) biết 5a+b+2c=0 . Chứng tỏ rằng Q(x).Q(-1) \(\le\) 0
b) biết Q(x)=0 với mọi x . Chứng tỏ rằng a=b=c=0
a) Ta có : \(Q\left(2\right)=4a+2b+c\)
\(Q\left(-1\right)=a-b+c\)
\(\Rightarrow Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)
\(\Rightarrow Q\left(2\right)=-Q\left(-1\right)\)
\(\Rightarrow Q\left(2\right).Q\left(-1\right)\le0\)
b) Vì \(Q\left(x\right)=0\) với mọi $x$
$\to Q(0) = c=0$
$Q(1) = a+b+c=a+b=0$ $(1)$
$Q(-1) = a-b +c = a-b=0$ $(2)$
Từ $(1)$ và $(2)$ $\to a=b=c=0$
Chứng tỏ rằng: x 2 – 6x + 10 > 0 với mọi x
Ta có: x 2 – 6x + 10 = x 2 – 2.x.3 + 9 + 1 = x - 3 2 + 1
Vì x - 3 2 ≥ 0 với mọi x nên x - 3 2 + 1 > 0 mọi x
Vậy x 2 – 6x + 10 > 0 với mọi x.(đpcm)
Chứng tỏ rằng: 4x – x 2 – 5 < 0 với mọi x
Ta có: 4x – x 2 – 5 = -( x 2 – 4x + 4) – 1 = - x - 2 2 -1
Vì x - 2 2 ≥ 0 với mọi x nên – x - 2 2 ≤ 0 với mọi x.
Suy ra: - x - 2 2 -1 ≤ -1 với mọi x
Vậy 4x – x 2 – 5 < 0 với mọi x.(đpcm)
chứng tỏ rằng M = x^2 - x +1 >0 với mọi x
\(M=\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\frac{3}{4}\)
\(M=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\) mà \(\left(x-\frac{1}{2}\right)^2\) luôn \(\ge0\) với mọi \(x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
Cho x, y ∈ Z. Hãy chứng tỏ rằng: Nếu x – y > 0 thì x > y
Áp dụng quy tắc chuyển vế trong bất đẳng thức ta có:
x – y > 0
x > 0 + y
hay x > y (điều phải chứng minh)
Cho x, y ∈ Z. Hãy chứng tỏ rằng: Nếu x > y thì x – y > 0
Áp dụng quy tắc chuyển vế trong bất đẳng thức ta có:
x > y
x > y + 0
x – y > 0 (điều phải chứng minh)
Chứng tỏ rằng: x-x²-2<0 với mọi x
x-x2-2
=-(x2-x+2)
=-(x-1/2)2-7/4
Vì -(x-1/2)2 < hoặc = 0 Với mọi x
=> -(x-1/2)2-7/4 < hoặc bằng -7/4
Kết luận
Chứng tỏ rằng nếu x>y thì x-y>0
nhưng cho mink hỏi từ đâu cậu lại lấy y-y mà lại ko lấy x-x