1. Tìm của các đa thức sau:
a, x2-3
b, x2+2x
c, (x-2)2+4
d, x2-3x+2
e, x2+6x+5
Bài 5: Tìm nghiệm của các đa thức sau: Dạng 1: a) 4x + 9 b) -5x + 6 c) 7 – 2x d) 2x + 5 Dạng 2: a) ( x+ 5 ) ( x – 3) b) ( 2x – 6) ( x – 3) c) ( x – 2) ( 4x + 10 ) Dạng 3: a) x2 -2x b) x2 – 3x c) 3x2 – 4x d) ( 2x- 1)2 Dạng 4: a) x2 – 1 b) x2 – 9 c)– x 2 + 25 d) x2 - 2 e) 4x2 + 5 f) –x 2 – 16 g) - 4x4 – 25 Dạng 5: a) 2x2 – 5x + 3 b) 4x2 + 6x – 1 c) 2x2 + x – 1 d) 3x2 + 2x – 1
Bài 1: Tính:
a) x2(x-2x3); b) (x2+1)(5-x); c) (x-2)(x2+3x-4); d) (x-2)(x-x2+4); e) (x2-1)(x2+2x); f) (2x-1)(3x+2)(3-x)
Bài 2: Tính:
a) (x-2y)2; b) (2x2+3)3; c) (x-2)(x2+2x+4); d) (2x-1)3
Bài 3: Rút gọn biểu thức:
a) (6x+1)2+(6x-1)2-2(1+6x)(6x-1); b) 3(22+1)(24+1)(28+1)(216+1); c) x(2x2-3)-x2(5x+1)+x2; d) 3x(x-2)-5x(1-x)-8(x2-3)
Bài 4: Tính nhanh:
a) 1012; b) 97.103; c) 772+232+77.46; d) 1052-52; e) A= (x-y)(x2+xy+y2)+2y3 tại x= \(\dfrac{2}{3}\) và y= \(\dfrac{1}{3}\)
Bạn chú ý đăng lẻ câu hỏi! 1/
a/ \(=x^3-2x^5\)
b/\(=5x^2+5-x^3-x\)
c/ \(=x^3+3x^2-4x-2x^2-6x+8=x^3=x^2-10x+8\)
d/ \(=x^2-x^3+4x-2x+2x^2-8=3x^2-x^3+2x-8\)
e/ \(=x^4-x^2+2x^3-2x\)
f/ \(=\left(6x^2+x-2\right)\left(3-x\right)=17x^2+5x-6-6x^3\)
Bài 3: Phân tích các đa thức sau thành nhân tử:
a) x2 + 10x + 25. b) 8x - 16 - x2
c) x3 + 3x2 + 3x + 1 d) (x + y)2 - 9x2
e) (x + 5)2 – (2x -1)2
Bài 4: Tìm x biết
a) x2 – 9 = 0 b) (x – 4)2 – 36 = 0
c) x2 – 10x = -25 d) x2 + 5x + 6 = 0
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
1.Viết biểu thúc sau dưới dạng bình phương của một tổng: 2xy2+x2y4+1 2 Tính giá trị của biểu thức sau: a) x2-y2 tại x= 87 và y=13 b)x3-3x2+3x-1 tại x=101 c) x3+9x2+27x+27 tại x=97 3. Chứng minh rằng: a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)=2a3 b) a3+b3=(a+b)[(a-b)2+ab] 4.Chứng tỏ rằng: a) x2-6x+10>0 với mọi x b) 4x-x2-5<0 với mọi x 5. Tìm giá trị nhỏ nhất của đa thức: a) P=x2-2x+5 b)Q=2x2-6x c) M=x2+y2-x+6y+10 6.Tìm giá trị lớn nhất của đa thức: a) A=4x-x2+3 b) B=x-x2 c)N=2x-2x2-5 7.Rút gọn các biểu thức sau: a)A=(3x+1)2-2(3x+1)(3x+5)+(3x+5)2 b)B=(a+b+c)2+(a-b+c)2-2(b-c)2 c)D= (a+b+c)2+(a-b-c)2+(b-c-a)2+(c-a-b)2 8. a) Tìm GTNN của A= 4/5+│2x-3│ b) Tìm GTLN của B=1/2(x-1)2+3 9.Cho a+b+c=0 C/m: a3+b3+c3= 3abc Câu hỏi tương tự Đọc thêm
MK KO BT MK MỚI HO C LỚP 6
AI HỌC LỚP 6 CHO MK XIN
Phân tích đa thức thành nhân tử:
a) 25 y 2 + 10 y 8 +1;
b) ( x - 1 ) 4 - 2 ( x 2 - 2 x + 1 ) 2 +1;
c) (x + 1)(x + 2)(x + 3)(x + 4) - 24;
d) ( x 2 + 4 x + 8 ) 2 + 3 x ( x 2 + 4x + 8) + 2 x 2 ;
e) x 4 + 6 x 3 +7 x 2 -6x + 1.
Phân tích các đa thức sau thành nhân tử:
a) 4 x 2 +4xy + y 2 ; b) ( 2 x + 1 ) 2 - ( x - 1 ) 2 ;
c) 9 - 6x + x 2 - y 2 ; d) -(x + 2) + 3( x 2 -4).
a) Áp dụng HĐT 1 thu được ( 2 x + y ) 2 .
b) Áp dụng HĐT 3 với A = 2x + l; B = x - l thu được
[(2x +1) + (x -1)] [(2x +1) - (x -1)] rút gọn thành 3x(x + 2).
c) Ta có: 9 - 6x + x 2 - y 2 = ( 3 - x ) 2 - y 2 = (3 - x - y)(3 -x + y).
d) Ta có: -(x + 2) + 3( x 2 - 4) = -{x + 2) + 3(x + 2)(x - 2)
= (x + 2) [-1 + 3(x - 2)] = (x + 2)(3x - 7).
Câu 1
Rút gọn các biểu thức sau:
a. 2x(3x + 2) - 3x(2x + 3)
b. (x + 2)3 + (x - 3)2 - x2(x + 5)
c. (3x3 - 4x2 + 6x) : 3x
Câu 2
Phân tích đa thức sau thành nhân tử: 2x3 - 12x2 + 18x
Câu 3
Tìm x, biết: 3x(x - 5) - x2 + 25 = 0
Câu 4 Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Câu 5 Cho x, y là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau:
P = x2 + 5y2 + 4xy + 6x + 16y + 32
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
Câu 2:
\(2x^3-12x^2+18x=2x\left(x^2-6x+9\right)=2x\left(x^2-2.x.3+3^2\right)=2x\left(x-3\right)^2\)
Bài 1: Phân tích các đa thức sau thành nhân tử
a. 1 - 4x2
b. 8 - 27x3
c. 27 + 27x + 9x 2 + x3
d. 2x3 + 4x2 + 2x
e. x2 - 5x - y2 + 5y
f. x2 - 6x + 9 - y2
g. 10x (x - y) - 6y(y - x)
h. x2 - 4x - 5
i. x4 - y4
Bài 2: Tìm x, biết
a. 5(x - 2) = x - 2
b. 3(x - 5) = 5 - x
c. (x +2)2 - (x+ 2) (x - 2) = 0
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a. A = x2 - 6x + 11
b. B = 4x2 - 20x + 101
c. C = -x2 - 4xy + 5y2 + 10x - 22y + 28
a.
\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
b.
\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
c.
\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)
\(=\left(x+3\right)^3\)
d.
\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
e.
\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f.
\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
g. 10x(x-y)-6y(y-x)
=10x(x-y)+6y(x-y)
=(x-y)(10x+6y)
h.x2-4x-5
=(x-5)(x+1)
i.x4-y4 = (x2-y2)(x2+y2)
B2.
a.5(x-2)=x-2
⇔5(x-2)-(x-2)=0
⇔4(x-2)=0
⇔x=2
b.3(x-5)=5-x
⇔3(x-5)+(x-5)=0
⇔4(x-5)=0
⇔x=5
c.(x+2)2-(x+2)(x-2)=0
⇔(x+2)[(x+2)-(x-2)]=0
⇔4(x+2)=0
⇔x=-2
Giải các phương trình tích sau:
1.a)(3x – 2)(4x + 5) = 0 b) (2,3x – 6,9)(0,1x + 2) = 0
c)(4x + 2)(x2 + 1) = 0 d) (2x + 7)(x – 5)(5x + 1) = 0
2. a)(3x + 2)(x2 – 1) = (9x2 – 4)(x + 1)
b)x(x + 3)(x – 3) – (x + 2)(x2 – 2x + 4) = 0
c)2x(x – 3) + 5(x – 3) = 0 d)(3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
3.a)(2x – 5)2 – (x + 2)2 = 0 b)(3x2 + 10x – 8)2 = (5x2 – 2x + 10)2
c)(x2 – 2x + 1) – 4 = 0 d)4x2 + 4x + 1 = x2
4. a) 3x2 + 2x – 1 = 0 b) x2 – 5x + 6 = 0
c) x2 – 3x + 2 = 0 d) 2x2 – 6x + 1 = 0
e) 4x2 – 12x + 5 = 0 f) 2x2 + 5x + 3 = 0
Bài 1:
a) (3x - 2)(4x + 5) = 0
<=> 3x - 2 = 0 hoặc 4x + 5 = 0
<=> 3x = 2 hoặc 4x = -5
<=> x = 2/3 hoặc x = -5/4
b) (2,3x - 6,9)(0,1x + 2) = 0
<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
<=> 2,3x = 6,9 hoặc 0,1x = -2
<=> x = 3 hoặc x = -20
c) (4x + 2)(x^2 + 1) = 0
<=> 4x + 2 = 0 hoặc x^2 + 1 # 0
<=> 4x = -2
<=> x = -2/4 = -1/2
d) (2x + 7)(x - 5)(5x + 1) = 0
<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
<=> 2x = -7 hoặc x = 5 hoặc 5x = -1
<=> x = -7/2 hoặc x = 5 hoặc x = -1/5
bài 2:
a, (3x+2)(x^2-1)=(9x^2-4)(x+1)
(3x+2)(x-1)(x+1)=(3x-2)(3x+2)(x+1)
(3x+2)(x-1)(x+1)-(3x-2)(3x+2)(x+1)=0
(3x+2)(x+1)(1-2x)=0
b, x(x+3)(x-3)-(x-2)(x^2-2x+4)=0
x(x^2-9)-(x^3+8)=0
x^3-9x-x^3-8=0
-9x-8=0
tự tìm x nha
Tìm nghiệm của các đa thức sau
a)x2-2(x2-8) b)B(X)=3x-5-4(2x+3) c)M(y)=3y2-5y d) D(x)=2x2-3(x2+4)
Giúp tớ với bài khó quá
a: đặt \(x^2-2\left(x^2-8\right)=0\)
\(\Leftrightarrow16-x^2=0\)
=>x=4 hoặc x=-4
b: Đặt \(3x-5-4\left(2x+3\right)=0\)
=>3x-5-8x-12=0
=>-5x-17=0
=>-5x=17
hay x=-17/5
c: Đặt \(3y^2-5y=0\)
=>y(3y-5)=0
=>y=0 hoặc y=5/3
d: Đặt \(2x^2-3\left(x^2+4\right)=0\)
\(\Leftrightarrow-x^2-12=0\)
hay \(x\in\varnothing\)