Cho A= 1/2^2 +1/3^2 + 1/4^2 + .... + 1/2015^2
Chứng minh A<3/4
cho A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/ 2015^2 + 1/2016^2. Chứng minh rằng: A < 2015/2016
Ta có : \(\dfrac{1}{2^2}\)<\(\dfrac{1}{1.2}\); \(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\);.....;\(\dfrac{1}{2016^2}\)<\(\dfrac{1}{2015.2016}\)
⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\)< \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2015.2016}\)
⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\) < 1 - \(\dfrac{1}{2016}\)= \(\dfrac{2015}{2016}\) (ĐCPCM)
Cho A= 1/2^2 + 1/3^2 + 1/4^2 +....+ 1/2015^2
Chứng minh A<3/4
ta thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{4}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2015^2}< \dfrac{1}{2014.2015}\)
=> A < \(\dfrac{1}{4}+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2014.2015}\right)\)
=> A< \(\dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\)
<=> A< \(\dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{2015}\right)\) = \(\dfrac{3}{4}-\dfrac{1}{2015}\) < \(\dfrac{3}{4}\).
=> đpcm.
( / là phân số, ^ là mũ )
Cho A= 1/2^2 + 1/3^2 + 1/4^2 + ....+ 1/2015^2
Chứng minh A < 3/4
Ta có:
1/2^2 < 1/1.2
1/3^2 < 1/2.3
...
1/2015^2 < 1/2014.2015
Suy ra: 1/2^2 + 1/3^2 + 1/4^2+...+1/2015^2 < 1/1.2 +1/2.3+...+1/2014.2015
1/2^2 + 1/3^2 + 1/4^2+...+1/2015^2 < 1-1/2+1/2-1/3+...+1/2014-1/2015
1/2^2 + 1/3^2 + 1/4^2+...+1/2015^2 < 1-1/2015
1/2^2 + 1/3^2 + 1/4^2+...+1/2015^2 < 2014/2015
Mình nghĩ đây là cách làm, bạn thử dựa vào làm xem nhé!
Ta có: \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}\right)\)
Nhận xét: \(\frac{1}{2^2}=\frac{1}{4}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
......
\(\frac{1}{2015^2}< \frac{1}{2014.2015}\)
\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\right)\)
\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{2015}\right)=\frac{1}{4}+\frac{1}{2}-\frac{1}{2015}=\frac{3}{4}-\frac{1}{2015}< \frac{3}{4}\)
Vậy A < 3/4
cho A =\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)
Chứng minh A <\(\frac{2015}{2016}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(A< 1-\frac{1}{2016}\)
\(A< \frac{2015}{2016}\left(đpcm\right)\)
\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}\)
\(=\frac{2015}{2016}\)
\(\Rightarrow A< \frac{2015}{2016}\)
a) Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}.\) Chứng minh rằng: A < 1
b) Cho B= \(2^1+2^2+2^3+...+2^{2016}\) Chứng minh rằng: B chia hết cho 21
cho A = 1/1*2+1/3*4+...+1/99*100 và B= 2015/51+2015/52+2015/53+...+2015/100. Chứng minh rằng B chia hết cho A
Cho A=1/2^2+1/3^2+1/4^2+...+1/2015^2+1/2016^2
Chứng minh rằng A không phải là số tự nhiên
CHO TỔNG SAU GOM 2015 SO HANG A=1/1^2+1/2^3+1/3^4+...+1/2015^2016
CHỨNG MINH RẰNG GIÁ TRỊ CỦA A KHÔNG LÀ SỐ NGUYÊN
Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2015^2}\)
Chứng minh rằng A<1
Vì \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};...;\frac{1}{2015^2}< \frac{1}{2014\cdot2015}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2014\cdot2015}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}< 1\)
Vậy \(A< 1\left(đpcm\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2015^2}< \frac{1}{2014.2015}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}< 1^{\left(đpcm\right)}\)