chứng minh pt: \(a^2+b^2⋮21\) thì \(a^2+b^2⋮441\)
Chứng minh biết: \(a^2+b^2\) chia hết cho \(21\)thì \(a^2+b^2\)chia hết cho \(441\)
Nếu \(a^2+b^2⋮21\) thì \(a^2+b^2⋮441\)
giả sử a^2 + b^2 chia hết cho 21
nếu a,b chia 7 dư (1...7)
thì a^2,b^2 chia 7 dư (1;2;4)
thì a^2 + b^2 không có giá trị nào chia hết cho 7
=> a^2 + b^2 chia hết cho 7 <=> a chia hết cho 7 và b cũng chia hết cho 7
=> a^2,b^2 chia hết cho 49
a,b chia 3 dư {1,2}
a^2,b^2 chia 3 dư 1
=> a^2 + b^2 không có giá trị nào chia hết cho 3
=> a và b đều chia hết cho 3
=> a^2 + b^2 chia hết cho 9
=> a^2 + b^2 chia hết cho 21 thì chia hết cho 21^2 = 441
CHÚC EM HỌC TỐT ^_^
CMR : với a,b thuộc Zthì a2+b2 chia hết cho 21 thì a2+b2 chia hết cho 441
cmr: nếu \(a^2+b^2⋮21\) thì \(a^2+b^2⋮441\)
( dùng đl FERMAT)
a , cho A = \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}\) . Chứng minh A < \(\dfrac{7}{4}\)
b ,cho B = 21 + 22 + 23 + ... + 260 . Chứng minh B \(⋮\) 21
b.ta chia B thành 10 nhóm mỗi nhóm có 6 hạng tử \(B=\left(2+2^2+2^3+2^4+2^5+2^6\right)+....+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(B\text{=}2\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(B\text{=}2.63+...+2^{56}.63\)
\(\Rightarrow B⋮63\)
\(\Rightarrow B⋮21\)
Cho a,b là 2 số nguyên.
CMR:\(5\left(a+b\right)^2+ab\)chia hết cho 441 thì ab cũng chia hết cho 441
Do \(5\left(a+b\right)^2+ab\)chia hết cho 441 = 212 nên
\(4\left(5\left(a+b\right)^2+ab\right)=20\left(a+b\right)^2+4ab\)chia hết cho 212
Ta lại có
\(20\left(a+b\right)^2+4ab=20\left(a+b\right)^2+\left(a+b\right)^2-\left(a-b\right)^2\)
\(=21\left(a+b\right)^2-\left(a-b\right)^2\)
Vì 21(a+b)2 chia hết cho 21 nên (a - b)2 chia hết cho 21
Ta thấy rằng 21 = 3.7 (3,7 là hai số nguyên tố)
Nên (a - b)2 chia hết cho 3 và 7
=> (a - b) chia hết cho 3 và 7 (vì 3, 7 là số nguyên tố)
=> (a - b) chia hết cho 21
=> (a - b)2 chia hết cho 212
Kết hợp với \(21\left(a+b\right)^2-\left(a-b\right)^2\)chia hết cho 212
=> 21(a + b)2 chia hết cho 212
=> (a + b) chia hết cho 21
Chứng minh tương tự ta se suy ra được (a + b)2 chia hết cho 212
=> 5(a + b)2 chia hết cho 212
=> ab chia hết cho 212 = 441
Chứng minh rằng với mọi a, b, c thì a2 + b2 + c2 +21/4 lớn hơn hoặc bằng 4
Chứng minh rằng nếu a+b \(\ge\) 2 thì ít nhất 1 trong 2 pt sau có nghiệm :
x^2 +2x +b =0 ; x^2 +2bx +a =0
\(\Delta'_1=a^2-b;\Delta'_2=b^2-a\)
\(\Delta'_1+\Delta'_2=a^2-b+b^2-a=\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(a+b-2\right)\)
\(=\left(a-1\right)^2+\left(b-1\right)^2+\left(a+b-2\right)\ge0\)
Vì \(\left(a-1\right)^2\ge0;\left(b-1\right)^2\ge0;a+b-2\ge0\left(gt\right)\)
Do đó trong hai số \(\Delta'_1;\Delta'_2\) có ít nhất 1 số ko âm
Vậy ít nhất 1 trong 2 pt đã cho có nghiệm.
Tính tổng A=4+42+43+...+441. Chứng minh rằng, A⋮21.
Sửa đề:\(A=4+4^2+4^3+...+4^{21}\)
=>\(4A=4^2+4^3+...+4^{22}\)
=>\(4A-A=4^{22}+4^{21}+...+4^3+4^2-4^{21}-...-4^3-4^2\)
=>\(3A=4^{22}-4^2\)
=>\(A=\dfrac{4^{22}-4^2}{3}\)
\(A=4+4^2+4^3+...+4^{21}\)
\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{19}+4^{20}+4^{21}\right)\)
\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{19}\left(1+4+4^2\right)\)
\(=21\left(4+4^4+...+4^{19}\right)⋮21\)