(x-2)×(x^2-2x+4)×(x+2)×(x^2+2x+4)
cmr:1-2/x-(2x+x^2/4+2x+x^2 + 2x-x^2/4-2x+x^2):(16-8x/4-2x+x^2 -16+8x/4+2x+x^2)=(x-1/x)^2
a,x^2+2x/(x+1)^2+3-x^2-2x/(x-1)^2+3=16/x^4+4x^2+16
b,x^2/x^2+2x+2+x^2/x^2-2x+2=5(x^2-5)/x^4+4+25/4
Đa thức P(x) = 2x^4 + 3x^2 − x^3 − 3x^4 − x^2 − 2x + 1 sau khi được thu gọn và sắp xếp theo bậc giảm dần của biến là:
A. P(x) = x^4 − x^3 + 2x^2 − 2x + 1
B.P(x) = −x^4 − x^3 + 3x^2 − 2x + 1
C. P(x) = −x^4 − x^3 + 2x^2 − 2x + 1
D. P(x) = x^4 − x^3 − 2x^2 − 2x + 1
làm phép chia :
a) (x^4 -2x^3 + 2x -1) : (x^2 - 1)
b) (x^3 -8) : (x^2 + 2x +4)
c) (x^6 - 2x^5 + 2x^4 + 6x^3 - 4x^2)n: 6x^2
d) (-2x^5 + 3x^2 - 4x^3) :2x^2
e) (15x^3 - 10x^2 + x - 2) : (x - 2)
f) (2x^4 - 3x^3 - 3x^2 + 6x - 2) : (x^2 - 2)
b: =x-2
d: \(=-x^3+\dfrac{3}{2}-2x\)
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
2x ^3 -5x^2+4x-1) : (2x+1)
(x63 -2x+4) ; (x+2)
(6x^3 - 19x^2+23x-12):(2x-3)
(x^4 - 2 x ^3 - 1+ 2 x ):(x^2 - 1)
(6x^3 - 5x^2 + 4x -1 ) : (2x^2-x+1)
(x^4 -5x^2+4):(x^2-3x+2)
d: \(\dfrac{x^4-2x^3+2x-1}{x^2-1}\)
\(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)
\(=x^2-2x+1\)
\(=\left(x-1\right)^2\)