so sánh A=\(\dfrac{36\cdot85\cdot20}{25\cdot84\cdot34}\),B=\(\dfrac{30\cdot63\cdot65\cdot8}{117\cdot200\cdot49}\).
\(\frac{428517}{571428}\)+\(\frac{30\cdot63\cdot65\cdot8}{117\cdot200\cdot49}\)+\(\frac{-525}{100}\)+\(\frac{36992}{4046}\)
tính giúp mik với
\(\frac{428517}{571428}+\frac{30.63.65.8}{117.200.49}+\frac{-525}{100}+\frac{36992}{4046}\)
\(=\)\(\frac{428517}{571428}+\frac{6}{7}+\frac{-21}{4}+\frac{64}{7}\)
Quy đồng mẫu số đc kq cuổi cùng là : 5,4999055
tính hợp lý \(\frac{9764}{36615}+\frac{36\cdot85\cdot20}{25\cdot84\cdot34}+2\cdot2+3\frac{19}{133}\)
Lời giải:
Gọi giá trị trên là $A$
$A=\frac{4}{15}+\frac{6}{7}+4+3+\frac{1}{7}$
$=\frac{4}{15}+(4+3)+(\frac{6}{7}+\frac{1}{7})$
$=\frac{4}{15}+7+1=8\frac{4}{15}$
so sánh a và b biết \(A=\frac{11\cdot13\cdot15+33\cdot39\cdot45+55\cdot65\cdot75+99\cdot117\cdot135}{11\cdot13\cdot17+39\cdot45\cdot51+65\cdot75\cdot85+117\cdot135\cdot153}:B=\frac{1111}{1717}\)
Rút gọn rồi so sánh
A=\(\dfrac{8056}{2012\cdot16-1982}\)
B=\(\dfrac{1\cdot2\cdot6+2\cdot4\cdot12+4\cdot8\cdot24+7\cdot14\cdot42}{1\cdot6\cdot9+2\cdot12\cdot18+4\cdot24\cdot36+7\cdot42\cdot63}\)
So sánh A và B
\(A=\frac{8056}{2012.16-1982}\)= \(\frac{2014.4}{2012.15+2012-1982}\)=\(\frac{2014.4}{2012.15+30}\)=\(\frac{2014.4}{2012.15+2.15}\)=\(\frac{2014.4}{15.\left(2012+2\right)}=\frac{2014.4}{15.2014}=\frac{4}{15}\)
B = \(\frac{1.2.6+2.4.12+4.8.24+7.14.42}{1.6.9+2.12.18+4.24.36+7.42.63}\)
= \(\frac{1.2.3.2+2.2.2.12+4.4.2.24+7.7.2.42}{1.2.3.9+2.12.2.9+4.24.4.9+7.42.7.9}\)
= \(\frac{2\left(1.2.3+2.2.12+4.4.24+7.7.42\right)}{9\left(1.2.3+2.2.12+4.4.24+7.7.42\right)}\)
= \(\frac{2}{9}\)
Ta có: \(\frac{4}{15}=\frac{4.3}{15.3}=\frac{12}{45};\frac{2}{9}=\frac{2.5}{9.5}=\frac{10}{45}\)
Vì \(\frac{12}{45}>\frac{10}{45}\Rightarrow\frac{4}{15}>\frac{2}{9}\Rightarrow A>B\)
Vậy A > B
Rút gọn rồi so sánh
A=\(\dfrac{8056}{2012\cdot16-1982}\)
B=\(\dfrac{1\cdot2\cdot6+2\cdot4\cdot12+4\cdot8\cdot24+7\cdot14\cdot42}{1\cdot6\cdot9+2\cdot12\cdot18+4\cdot24\cdot36+7\cdot42\cdot63}\)
So sánh A và B
\(A=\dfrac{8056}{2012.16-1982}\)
\(A=\dfrac{8056}{32192-1982}\)
\(A=\dfrac{8056}{30210}=\dfrac{12}{45}\)
\(B=\dfrac{1.2.6+2.4.12+4.8.24+7.14.42}{1.6.9+2.12.18+4.24.36+7.42.63}\)
\(B=\dfrac{12+96+768+4116}{54+432+3456+18522}\)
\(B=\dfrac{4992}{22464}=\dfrac{10}{45}\)
Vậy: \(\dfrac{12}{45}>\dfrac{10}{45}\Rightarrow A>B\)
\(164\cdot16+81\cdot84+17\cdot16\)
\(318\cdot15+35+15\cdot32+35\cdot49\)
\(435\cdot34+35\cdot86+65\cdot75+65\cdot45\)
\(567\cdot42+58\cdot67\)
\(665\cdot59+65\cdot42\)
\(718\cdot74+126\cdot18\)
\(828\cdot76+13\cdot28+11\cdot28\)
\(99\cdot5\cdot7\cdot7-6\cdot47+57\cdot3-47\cdot4\)
\(1023\cdot34-24\cdot49+26\cdot34-24-49\)
so sánh A và B biết
A=\(\frac{1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10}{3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20}\)
B=\(\frac{111111}{666665}\)
\(A=\frac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)
\(A=\frac{1.2.\left(1+2^2+3^2+4^2+5^2\right)}{3.4.\left(1+2^2+3^2+4^2+5^2\right)}\)
\(A=\frac{1.2}{3.4}\)
\(A=\frac{1}{6}\)
Ta thấy : \(B=\frac{111111}{666665}>\frac{111111}{666666}=\frac{1}{6}\)
Vậy B > A
Theo đề bài, ta có:
\(A=\frac{1\times2+2\times4+3\times6+4\times8+5\times10}{3\times4+6\times8+9\times12+12\times16+15\times20}\)
\(A=\frac{1\times2\times\left(1+2^2+3^2+4^2+5^2\right)}{3\times4\times\left(1+2^2+3^2+4^2+5^2\right)}\)
\(A=\frac{1\times2}{3\times4}\)
\(A=\frac{1}{6}\)
Ta thấy rằng: \(B=\frac{111111}{666665}>\frac{111111}{666666}=\frac{1}{6}\)
Vậy \(B>A\)
a/ 5 .\(\sqrt{0,01}\) - \(\sqrt{0,25}\)
b/ 15\(\dfrac{1}{4}\) : (-\(\dfrac{5}{7}\)) - 25\(\dfrac{1}{4}\) : (-\(\dfrac{5}{7}\))
c/ \(\dfrac{5^4\cdot20^4}{25^4\cdot4^5}\)
a, =2.0,1-0,5 b,=\(\left(15\dfrac{1}{4}-25\dfrac{1}{4}\right):\left(-\dfrac{5}{7}\right)\)
=0,2-0,5 = -10:(\(\dfrac{-5}{7}\))
=-0,3 = 14
c, \(=\dfrac{5^4.\left(4.5\right)^4}{\left(5^2\right)^4.4^5}=\dfrac{5^4.4^4.5^4}{5^8.4^5}=\dfrac{1}{4^{ }}\)
\(\dfrac{1\cdot2\cdot3+2\cdot4+6+4\cdot8\cdot12}{1\cdot3\cdot5+2\cdot6\cdot10+4\cdot12\cdot20}\)
\(\dfrac{1\cdot2\cdot3+2\cdot4\cdot6+4\cdot8\cdot12}{1\cdot3\cdot5+2\cdot6\cdot10+4\cdot12\cdot20}\\ =\dfrac{1\cdot2\cdot3+2\cdot1\cdot2\cdot2\cdot2\cdot3+4\cdot1\cdot4\cdot2\cdot4\cdot3}{1\cdot3\cdot5+2\cdot1\cdot2\cdot3\cdot2\cdot5+4\cdot1\cdot4\cdot3\cdot4\cdot5}\\ =\dfrac{1\cdot2\cdot3\cdot\left(1+2^3+4^3\right)}{1\cdot3\cdot5\cdot\left(1+2^3+4^3\right)}\\ =\dfrac{1\cdot2\cdot3}{1\cdot3\cdot5}\\ =\dfrac{6}{15}\)
Bạn ghi đề sai rồi, mình sửa lại đề ở phần (*) rồi nhé!
Ta có: \(\dfrac{1.2.3+2.4.6+4.8.12}{1.3.5+2.6.10+4.12.20}\) (*)
= \(\dfrac{1.2.3\left(1+2^3+4^3\right)}{1.3.5\left(1+2^3+4^3\right)}\) = \(\dfrac{1.2.3}{1.3.5}\) = \(\dfrac{2}{5}\)