Tìm số tự nhiên có hai chữ số \(\overline{ab}\) biết rằng số \(\overline{ab3}\) = \(\dfrac{3}{4}\) số \(\overline{3ab}\).
Giải chi tiết dùm mình nha. Đừng làm tắt rất khó hiểu
1. Tìm số tự nhiên có hai chữ số \(\overline{ab}\) , biết rằng
số \(\overline{ab3}=\dfrac{3}{4}\) số \(\overline{3ab}\)
\(\overline{ab3}=\dfrac{3}{4}\overline{3ab}\)
\(\Rightarrow4.\overline{ab3}=3.\overline{3ab}\)
\(\Rightarrow4\left(10.\overline{ab}+3\right)=3\left(300+\overline{ab}\right)\)
\(\Rightarrow40.\overline{ab}+12=900+3.\overline{ab}\)
\(\Rightarrow900-12=40\overline{ab}-3\overline{ab}\)
\(\Rightarrow888=37\overline{ab}\)
\(\Rightarrow\overline{ab}=888:37=24\)
Ta có: \(\overline{ab3}=\dfrac{3}{4}\overline{3ab}\)
\(\Leftrightarrow10\overline{ab}+3=\dfrac{3}{4}\left(300+\overline{ab}\right)\)
\(\Leftrightarrow10\overline{ab}+3=\dfrac{3}{4}.300+\dfrac{3}{4}\overline{ab}\)
\(\Leftrightarrow10\overline{ab}-\dfrac{3}{4}\overline{ab}=225-3\)
\(\Leftrightarrow\dfrac{37}{4}\overline{ab}=222\)
\(\Leftrightarrow\overline{ab}=222:\dfrac{37}{4}=222.\dfrac{4}{37}=24\)
Vậy \(\overline{ab}\) = 24.
Câu hỏi của Đặng Trọng Hoàng - Toán lớp 6
Tìm 1 số tự nhiên có 2 chữ số \(\overline{ab}\) biết rằng \(\overline{ab3}\) = \(\dfrac{3}{4}\) số \(\overline{3ab}\)
Vì \(\overline{a3b}\) \(=\dfrac{3}{4}\cdot\overline{3ab}\)
\(\Rightarrow\overline{a3b}=\overline{3ab}\cdot\dfrac{3}{4}\)
\(\Rightarrow\overline{10ab}+3=\left(300+\overline{ab}\right)\cdot\dfrac{3}{4}\)
\(\Rightarrow\overline{10ab}+3=225+\dfrac{3}{4}\cdot\overline{ab}\)
\(\Rightarrow\overline{10ab}-\dfrac{3}{4}\cdot\overline{ab}=225-3\)
\(=>\dfrac{37}{4}\cdot\overline{ab}=222\)
\(\Rightarrow\overline{ab}=222\text{ }:\text{ }\dfrac{37}{4}=24\)
Vậy số cần tìm là 24
Tìm số tự nhiên \(\overline{ab}\) biết \(\overline{ab3}\) \(=\dfrac{3}{4}.\overline{3ab}\)
Tìm số tự nhiên có hai chữ số: \(\overline{ab}\) sao cho phân số: \(P=\frac{\overline{ab}}{a+b}\) có giá trị nhỏ nhất
(Nhớ giải chi tiết nhé)
Ta có P=10a+b/a+b
=9a+a+b/a+b
=1+9a/a+b
=1+9/a+b/a
=1+9/1+b/a
Để P có giá trị nhỏ nhất=>9/1+b/a cũng phải đạt giá trị nhỏ nhất=>1+b/a đạt giá trị lớn nhất<=>b/a có giá trị lớn nhất=>b lớn nhất ; a nhỏ nhất
Mà a và b là số có 1 chữ số và a khác 0=>a=1 ; b=9=>ab=19
Khi đó P=19/1+9=1,9
Câu 1:Số các số tự nhiên có hai chữ số là..........
Câu 2:Tính: 764.458 =.........
Câu 3:Tìm , biết: .
Trả lời: .........
Câu 4:Tính: 23.564.7 =.........
Câu 5:Tìm , biết: .
Trả lời: .........
Câu 6:Số các số tự nhiên lẻ có ba chữ số là.........
Câu 7:Tổng các số tự nhiên lẻ từ 1 đến 999 bằng.........
Câu 8:Tìm số có hai chữ số dạng , biết rằng: . Số cần tìm là.........
Câu 9:Tổng của số lớn nhất có bốn chữ số khác nhau và số nhỏ nhất có bốn chữ số khác nhau là.........
Câu 10: Cho phép tính cộng: . Như vậy .........
Câu 1: 90
Câu 2: 349912
Câu 3: 24
Câu 4: 90804
Câu 5: 19
Câu 6: 450
Câu 7: 250000
Câu 8: 15
Câu 9: 11110
Câu 10: 910010
1. 90
2. 349912
3. 24
4. 90804
5. 19
6. 450
7. 250000
8. Phân tích được: 100 + 10a + b + 36 = 100a +10b + 1
Chuyển vế ta được : 90a + 9b = 135
9 ab = 135
ab = 15
9. 9876 + 1023 = 10899
10. ab4c + 176d = ef900
Ta thấy c+d=0 mà 4+6 =0 nên c+d không nhớ. suy ra c=d =0
Thay vào : ab40 +1760 = ef900
4+6 =0 nhớ 1 suy ra b=1
Thay vào : a140 + 1760 = ef900
Ta thấy a+1 + ef mà chỉ có 9+1 mới bằng 2 chữ số trong trường hợp này nên a=9
Ta thay vào được : 9140 + 1760 = 10900
Vậy abcdef = 910010
1, Chứng tỏ rằng: \(10^{10}-1⋮9\)
2, Thay \(x,y,z\)bằng các chữ số thích hợp để số \(\overline{28xy7}⋮2,5\text{và}9\)
3, Cho \(A=2^3.3^2\). Tìm Ư(A)
4, Biết số tự nhiên \(\overline{aaa}\)chỉ có 3 ước số khác 1. Tìm số đó.
(Các bạn giải chi tiết hộ mình nha. Thank you!)
1) Có 1010 = 1000..0 (có 10 số 0 )
1010 - 1= 99..9 ( 10 số 9 ) chia hết cho 9
Tìm số tự nhiên có 4 chữ số biết
\(\overline{abba}=\overline{ab}^2+\overline{ba}^2+a-b\)
Bài 1: Thay các chữ a, b, c, d bằng các số thích hợp:
\(\overline{ab}\times\overline{cd}=\overline{bbb}\)
Bài 2: Điền các chữ số vào dấu hỏi và vào các chữ sau:
a) \(\overline{abcd}\times\overline{dcba}=\overline{?????000}\)
b) \(????+????=?9997\)
Bài 3: Tìm số tự nhiên biết tổng của nó và các chữ số của nó bằng 1987.
Bài 4: Cho a là số có bốn chữ số, tổng các chữ số của a là b. Tổng các chữ số của b là c. Biết a + b + c = 1989. Tìm a.
Bài 5: Tìm số tự nhiên nhỏ nhất chia hết cho 1987 mà 5 chữ số đầu tiên bên trái của số tự nhiên đó đều là 1.
Bài 6: Tìm các chữ số a, b, c để: \(\overline{abbc}=\overline{ab}\overline{ }\times\overline{ac}\times7\)
Bài 5:
Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825
=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683
=> abc chia 1987 dư 304. Mà abc nhỏ nhất
=> abc = 304
Vậy số tự nhiên là 11111304
1/ Cho \(S=\overline{abc}+\overline{bca}+\overline{cab}\)
Chứng minh rằng: S không phải là số chính phương
2/ Tìm các số có ba chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngược lại là 1 số chính phương.
3/ Tìm 3 số tự nhiên a, b, c (a > b > c > 0), biết rằng: \(\overline{abc}+\overline{bca}+\overline{cab}=666\)
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)