Cho tam giác ABC có góc A=90o, góc C=30o. Đường trung trực BC cắt AC tại M. Chừng minh BM là tia phân giác Của góc ABC
Cho tam giác ABC vuông tại A, có góc C=30 độ. đường trung trực của BC cắt AC tại M. CMT BM là tia phân giác của góc ABC
. Cho tam giác ABC vuông tại A có AB<AC đường trung trực của cạnh BC cắt AC tại M, biết BM là tia phân giác của góc ABC. Tính góc ACB
Gọi O à 1 điểm nằm trên đường trung trực của BC (O thuộc BC)
Xét \(\Delta ABM\)và \(\Delta OBM\)có
\(\widehat{ABM}=\widehat{MBO}\)(gt)
BM chung
\(\widehat{A}=\widehat{BOM}\)(=90o)
=> \(\Delta ABM\)=\(\Delta OBM\)(ch-gn)
=> \(\widehat{AMB}=\widehat{BMO}\)(cặp góc tương ứng)
Xét\(\Delta MBO\)và\(\Delta MCO\) có
MO chung
\(\widehat{MOB}=\widehat{MOC}\)(=900)
BO=OC
=> \(\Delta MBO\)=\(\Delta MCO\)(2cgv)
=>\(\widehat{BMO}=\widehat{CMO}\)(cgtư)
.=> \(\widehat{AMB}=\widehat{BMO}\)=\(\widehat{CMO}\)
mà \(\widehat{AMB}+\widehat{BMO}+\widehat{CMO}=180^o\)
=>\(\widehat{AMB}=\widehat{BMO}=\widehat{CMO}=60^0\)
=> \(\widehat{ACB}=90^{o^{ }}-60^0=30^0\)
Cho tam giác ABC vuông ở A có góc C =30 độ .Đường trung trung trực của BC cắt AC ở M.Chứng minh BM là tia phân giác của góc ABC
Cho tam giác ABC, có góc A khác 90o. Các đường trung trực của AB và của AC cắt nhau tại O và cắt BC lần lượt theo thứ tự ở M và N. CMR: a/ Góc AOC = 2 góc ABC
b/ AO là tia phân giác của góc MAN
Cho tam giác ABC vuông tại A có góc ACB = 30o. Tia phân giác của góc B cắt AC tại M. Trên cạnh BC lấy điểm E sao cho BE = BA.
a) Chứng minh : ME vuông góc với BC
b) Tam giác AEB và AEC là tam giác gì? Vì sao?
c) Kẻ CH vuông góc với BM. CH cắt AB tại F. Chứng minh 3 điểm E, M, F thẳng hàng
a) Xét ΔAMB và ΔEMB có
BA=BE(gt)
\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{ABE}\))
BM chung
Do đó: ΔAMB=ΔEMB(c-g-c)
Suy ra: \(\widehat{MAB}=\widehat{MEB}\)(hai góc tương ứng)
mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{MEB}=90^0\)
hay ME\(\perp\)BC(đpcm)
b) Ta có: ΔABC vuông tại A(gt)
\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ABC}+30^0=90^0\)
\(\Leftrightarrow\widehat{ABC}=60^0\)
hay \(\widehat{ABE}=60^0\)
Xét ΔABE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Xét ΔBAE cân tại B có \(\widehat{ABE}=60^0\)(cmt)
nên ΔBAE đều(Dấu hiệu nhận biết tam giác đều)
Cho tam giác ABC vuông tại A có góc C= 30 độ. đường trung trực của BC cắt AC ở M
a, tính góc MBC
b,Cm
BM là tia phân giác của góc ABC
cho tam giác abc có góc b = 44 độ; góc c=22 độ. m là trung điểm bc. đường trung trực của bc cắt ac tại d.
a/ tính góc bac.
b/ chứng minh: db=dc.
c/ giả sử md cắt tia ba tại e. chứng minh tam giác ebm = tam giác ecm.
d/ chứng minh: bd là phân giác của góc B.
b: Ta có: D nằm trên đường trung trực của BC
nên DB=DC
Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:
a, - 120x5y4 b, 60x6y2 c, -5x15y3
Bài 2: Điền đơn thức thích hợp vào chỗ trống:
a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5
Bài 3: Thu gọn các đơn thức sau:
a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2
d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2
Bài 4: Cho tam giác ABC vuông tại A (AC>AB). Gọi I là trung điểm của BC. Vẽ đường trung trực của cạnh BC cấtC tại D. Trên tia đối của tia AC lấy điểm E sao cho AE = AD. Gọi F là giao điểm của BE và đường thẳng AI. Chứng minh :
a, CD = BE; b, Góc BEC = 2. góc BEC
c, Tam giác AEF cân d, AC=BF
Bài 5: Cho tam giác ABC có góc A bằng 90o và BD là đường phân giác. Trên BC lấy điểm E sao cho BE = BA
a, Chứng minh AD = DE và BD là đường trung trực của đoạn thẳng AE
b, Kẻ AH vuông góc với BC. Chứng minh: AE là tia phân giác của góc HAC
c, Chứng minh AD<CD
d, Gọi tia Cx là tia đối của tia CB. Tia phân giác của góc Acx cắt đường thẳng BD tại K. Tính số đo góc BAK
Bài 6: Cho tam giác abc cân tại a, đường phân giác của góc b cắt ac tại M.
Kẻ me vuông góc với bc ( e thuộc bc). đường thẳng em cắt ba tại I
a, chứng minh tam giác abm = tam giác ebm
b, chứng minh bm là đường trung trực của ae
c, so sánh am và mc
d, chứng minh tam giác BCI cân
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân
Bài 1:
Cho tam giác ABC cân tại A, từ B kẻ đường thẳng x vuông góc với AB, từ C kẻ đường thẳng y vuông góc với AC, x cắt y tại M.
Chứng minh: AM là tia phân giác của góc BAC.
Bài 2:
Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt đường trung trực BC tại I. Kẻ IH vuông góc với AB; IK vuông góc với AC.
Chứng minh: BH = CK.
Bài 3:
Cho tam giác ABC cân tại A, các đường trung trực của AB và AC cắt nhau tại I.
Chứng minh: AI là tia phân giác của góc BAC.