b: Ta có: D nằm trên đường trung trực của BC
nên DB=DC
b: Ta có: D nằm trên đường trung trực của BC
nên DB=DC
cho tam giác ABC có góc A 90 độ BC 2AB E là trung điểm của BC. Tia phân giác của góc B cắt AC tại D.a chứng minh DB là tia phân giác của góc ADEb chứng minh BD DCc tính góc C, góc B của tam giác ABC
cho tam giác ABC có góc A =90 độ; BC=2AB; E là trung điểm của BC. Tia phân giác của góc B cắt AC tại D.
a/chứng minh DB là tia phân giác của góc ADE
b/ chứng minh BD=DC
c/tính góc C, góc B của tam giác ABC
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
cho tam giác ABC vuông tại A có ab<ac. trên cạnh ac lấy điểm d sao cho ad= ab. gọi I là trung điểm của bd. giả sử góc acb= 40 độ. Tính góc abc. Chứng minh tam giác abi= tam giác adi và góc adi bằng góc abi. qua d kẻ đường thẳng dm song song với ab(m thuộc bc). Chứng minh db là tia phân giác của góc adm. tia ai cắt bc tại e. cm góc dmc bằng góc ade
Cho tam giác ABC vuông tại A, có góc ABC = 60*. Trên tia BC lấy điểm D sao cho BD = BA. Đường thẳng vuông góc với BC tại D cắt cạnh AC tại E, cắt tia BA tại F.
a) Tính số đo góc ACB và so sánh độ dài các cạnh của tam giác ABC.
b) Chứng minh: BE là đường trung trực của đoạn thẳng AD và BE là tia phân giác của góc ABC.
c) Chúng minh: AD // FC.
d) Chứng minh: AC = 3DE.
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BA=BE. Tia phân giác của góc B cắt AC tại D
a) Chứng minh tam giác ABD= tam giác EBD
b) Chứng minh BD là đường trung trực của AE
c) Kẻ AH vuông góc BC ( H thuộc BC ). Chứng minh AH //DE
d) Chứng minh góc ABC=góc EDC ( gợi ý: sử dụng tính chất 2 góc nhọn phụ nhau trong 2 tam giác vuông )
e) Gọi K là giao điểm của ED và BA. M là trung điểm của KC. Chứng minh B, D, M thẳng hàng
🤒🤒ÉT O ÉTTTTTT
Cho tam giác ABC (AB=AC)có góc A =120 độ .Trung trực d của AC cắt BC tại D .Trên tia AD lấy điểm E sao cho AE=BD
a Tính góc ABC ,góc ACB ,góc CAD và chứng minh AD=CE
b Chứng minh tam giác DCE là tam giác đầu
c Vẽ đường trung tuyến AH của tam giác ABC .Tia AH cắt d tại I.Chứng minh IC qua trung điểm của DE
Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I
a) Chứng minh tam giác ABD = tam giác ACE
b) Chứng minh I là trung điểm của BC
c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH
d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF
Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K
a) Tính độ dài cạnh BC
b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC
c) Chứng minh AC = DK
d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân
Các bạn làm hộ mình nha, mình cần gấp lắm