Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thái Thùy Linh
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 1 2021 lúc 15:34

a.

Chọn \(C\left(1;1;1\right)\) là 1 điểm thuộc denta

\(\Rightarrow\overrightarrow{AC}=\left(0;-1;4\right)\)

Đường thẳng denta có \(\overrightarrow{u_{\Delta}}=\left(2;-1;1\right)\) là 1 vtcp

\(\Rightarrow\left[\overrightarrow{AC};\overrightarrow{u_{\Delta}}\right]=\left(3;8;2\right)\)

\(\Rightarrow\left(Q\right)\) nhận \(\left(3;8;2\right)\) là 1 vtpt

Phương trình (Q):

\(3\left(x-1\right)+8\left(y-2\right)+2\left(y+3\right)=0\)

b.

Mặt phẳng (P) nhận \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) là 1 vtpt

Ta có: \(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_{\left(P\right)}}\right]=\left(-2;-1;3\right)\)

Mặt phẳng (Q) nhận (2;1;-3) là 1 vtpt

Phương trình (Q):

\(2\left(x-1\right)+1\left(y-2\right)-3\left(z+3\right)=0\)

Nguyễn Việt Lâm
28 tháng 1 2021 lúc 15:54

c.

Gọi M là giao điểm denta và (P) thì tọa độ M thỏa:

\(-1+2t+2-t+t-3=0\Rightarrow t=1\)

\(\Rightarrow M\left(1;1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_{\Delta}}\right]=\left(2;1;-3\right)\)

Đường thẳng d nhận (2;1;-3) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=1+t\\z=1-3t\end{matrix}\right.\)

d.

Do M thuộc denta nên tọa độ có dạng: \(M\left(-1+2t;2-t;t\right)\)

M là trung điểm AN \(\Rightarrow N\left(-3+4t;2-2t;2t+3\right)\)

N thuộc (P) nên: \(-3+4t+2-2t+2t+3-3=0\Rightarrow t=\dfrac{1}{4}\)

\(\Rightarrow\overrightarrow{MN}=\left(-2+2t;-t;t+3\right)=\left(-\dfrac{3}{2};-\dfrac{1}{4};\dfrac{13}{4}\right)=-\dfrac{1}{4}\left(6;1;13\right)\)

Phương trình d: \(\left\{{}\begin{matrix}x=1+6t\\y=2+t\\z=-3+13t\end{matrix}\right.\)

Sách Giáo Khoa
Xem chi tiết
Khánh Hà
1 tháng 4 2017 lúc 14:34

Giải:

a) Mặt phẳng (Oxy) qua điểm O(0 ; 0 ; 0) và có vectơ pháp tuyến (0 ; 0 ; 1) và là vectơ chỉ phương của trục Oz. Phương trình mặt phẳng (Oxy) có dạng:

0.(x - 0) +0.(y - 0) +1.(z - 0) = 0 hay z = 0.

Tương tự phương trình mặt phẳng (Oyz) là : x = 0 và phương trình mặt phẳng (Ozx) là: y = 0.

b) Mặt phẳng (P) qua điểm M(2; 6; -3) song song với mặt phẳng Oxy nhận (0 ; 0 ; 1) làm vectơ pháp tuyến. Phương trình mặt phẳng (P) có dạng: z +3 = 0.

Tương tự mặt phẳng (Q) qua M và song song với mặt phẳng Oyz có phương trình x - 2 = 0.

Mặt phẳng qua M song song với mặt phẳng Oxz có phương trình y - 6 = 0.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 7 2019 lúc 18:26

Đáp án C

Phương trình mặt phẳng (Q) viết lại dưới dạng: 3x - 6y + 2z - 6 = 0

 

Suy ra đáp án B sai. Trong ba đáp án còn lại chỉ có mặt phẳng ở đáp án C đi qua điểm A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 7 2017 lúc 8:09

Chọn  n P → = n Q →  = (1; 0; −1)

Phương trình của (P) là: (x – 1) – (z – 2) = 0 hay x – z + 1 = 0.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 2 2017 lúc 15:41

Ta có:  AB → (−1; 4; −1);  AC → (1; 4; −3)

⇒  AB →   ∧ AC →  

Giải sách bài tập Toán 12 | Giải sbt Toán 12

= (−8; −4; −8)

Suy ra có thể chọn  n P →  = (2; 1; 2)

Phương trình của (P) là: 2x + (y – 1) + 2(z + 1) = 0 hay 2x + y + 2z + 1 = 0.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 8 2019 lúc 12:08

Mặt phẳng ( α ) đi qua hai điểm A, B và vuông góc với mặt phẳng ( β ): x + 2y – z = 0.

Vậy hai vecto có giá song song hoặc nằm trên ( α ) là  AB →  = (2; 2; 1) và  n β →  = (1; 2; −1).

Suy ra ( α ) có vecto pháp tuyến là:  n α →  = (−4; 3; 2)

Vậy phương trình của ( α ) là: -4x + 3(y – 1) + 2z = 0 hay 4x – 3y – 2z + 3 = 0

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
22 tháng 5 2017 lúc 16:44

Ôn tập chương III

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 11 2017 lúc 17:22

Đáp án A

Từ giả thiết ta suy ra:

Từ đó suy ra phương trình của mặt phẳng (P) là: 1(x - 1) - 1(y - 0) = 0  x - y - 1 = 0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 12 2019 lúc 6:26

Đáp án A

Từ giả thiết ta suy ra

Mặt khác (P) đi qua điểm A(1 ;0 ;1) nên ta có phương trình của mặt phẳng (P) là : 1(x - 1) - 1(y - 0) = 0 <=> x - y - 1 = 0.

Vậy đáp án đúng là A.