Tính :
a) \(\left(1+i\right)^{2006}\)
b) \(\left(1-i\right)^{2006}\)
bài 1: cho abc=2006
tính A=
\(\dfrac{a}{ab+a+2006}+\dfrac{b}{bc+b+1}+\dfrac{2006c}{ac+2006c+2006}\)
bài 2:a,b,c thỏa mãn \(a^3+b^3+c^3\)=3abc
tính N=\(\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)
2)
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-cb-ac\right)\)
\(\Rightarrow a+b+c=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
\(\Rightarrow N=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
\(\Rightarrow N=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}\)
\(\Rightarrow N=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\)
\(\Rightarrow N=-1\)
Bài 1:
Thay 2006 = abc vào biểu thức A ,có :
\(\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{abc^2}{ac+abc^2+abc}\)
\(=\dfrac{a}{a+ab+abc}+\dfrac{ab}{a\left(1+b+bc\right)}+\dfrac{c.abc}{c\left(a+ab+abc\right)}\)
\(=\dfrac{a}{a+ab+abc}+\dfrac{ab}{a+ab+abc}+\dfrac{abc}{a+ab+abc}\)
\(=\dfrac{a+ab+abc}{a+ab+abc}=1\)
Vậy tại abc = 2006 giá trị biểu thức A là 1
E xin ủng hộ cách khác cho bài 2 :(
Áp dụng hđt mở rộng ta có:\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)+3abc\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)+3abc=3abc\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2=ab+bc+ac\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
\(N=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Với \(a=b=c\) ta có: \(N=\dfrac{2a.2a.2a}{a^3}=\dfrac{8a^3}{a^3}=8\)
Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\) ta có: \(N=\dfrac{-abc}{abc}=-1\)
Cho a+b+c=0 và ab+bc+ca=0
Tính M = \(\left(a-2005\right)^{2006}+\left(b-2005\right)^{2006}+ \left(c-2005\right)^{2006}\)
Ta có a+b+c=0\(\Rightarrow\)\(\left(a+b+c\right)^2=0\)\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)\(\Rightarrow a^2+b^2+c^2=0\).Mặt khác ta có :\(a^2\ge0\forall a;b^2\ge0\forall b;c^2\ge0\forall c\)\(\Rightarrow a=b=c=0\)\(\Rightarrow\)\(M=\left(a-2005\right)^{2006}+\left(b-2005\right)^{2006}+\left(c-2005\right)^{2006}\)=\(\left(-2005\right)^{2006}+\left(-2005\right)^{2006}+\left(-2005\right)^{2006}\)=\(3.2005^{2006}\)
Tính
I=\(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right)...\)\(\left(1-\frac{1}{1+2+3+...+2006}\right)\)
Cho \(\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)=2006\) hãy tính tổng a+b
cho: \(\frac{2006.2006-2005.2007}{2006.2007-2006.2005}\)
bài làm nào đúng:
a, \(\frac{2006.2006-2005.2007}{2006.2007-2006.2005}\)
= \(\frac{2006^2-\left(2006-1\right).\left(2006+1\right)}{2006.\left(2007-2005\right)}\)
=\(\frac{2006^2-\left(2006^2-1\right)}{2006.2}\)
=\(\frac{1}{4012}\)
b,
=\(\frac{2006.2006-2005.2006+2005}{2006.\left(2007-2005\right)}\)
=\(\frac{2006.\left(2006-2005\right)+2005}{2006.2}\)
=\(\frac{4011}{4012}\)
câu nào đúng, câu nào sai?
theo mình là câu a nhưng thằng em mình cứ cãi là câu b đúng, tại cô giáo nó làm như vậy( có phải câu b là do bị nhầm dấu từ dòng đầu tiên đúng ko?
Đúng là câu b sai, nhầm dấu đoạn đầu, phải là \(\frac{2006.2006-\left(2005.2006+2005\right)}{2006.\left(2007-2005\right)}\)
Phá ngoặc thì thành trừ nhưng cô của em bạn lại sót=> sai luôn cả tính chất bài toán.
P/s: Thử lại bằng casio là thấy rõ bạn đúng.
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)Chứng minh:
a)\(\frac{\left(20a^{2006}+11b^{2006}\right)^{2007}}{\left(20a^{2007}-11b^{2007}\right)^{2006}^{ }}=\frac{\left(20c^{2006}+11d^{2006}\right)^{2007}}{\left(20c^{2007}-11d^{2007}\right)^{2006}}\)
b)\(\left(4a+5b\right)\left(7c-11d\right)=\left(7a-11b\right)\left(4c+5d\right)\)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{3a^2+2b^2}{3c^2+2d^2}\)
b)\(\frac{4a^4+5b^4}{4c^4+5d^4}=\frac{a^2b^2}{c^2d^2}\)
c)\(\left(\frac{a-b}{c-d}\right)^{2005}=\frac{2a^{2005}-b^{2005}}{2c^{2005}-d^{2005}}\)
d)\(\frac{2a^{2005}+5b^{2005}}{2c^{2005}+5d^{2005}}=\frac{\left(a+b\right)^{2005}}{\left(c+d\right)^{2005}}\)
e)\(\frac{\left(20a^{2006}+11b^{2006}\right)^{2007}}{\left(20a^{2007}-11b^{2007}\right)^{2006}}=\frac{\left(20c^{2006}+11d^{2006}\right)^{2007}}{\left(20c^{2007}-11d^{2007}\right)^{2006}}\)
f)\(\frac{\left(20a^{2007}-11c^{2007}\right)^{2006}}{\left(20a^{2006}+11c^{2006}\right)^{2007}}=\frac{\left(20b^{2007}-11d^{2007}\right)^{2006}}{\left(20b^{2006}+11d^{2006}\right)^{2007}}\)
ừ, bạn bik làm thì giúp mình nha ^^
\(cho:ab+bc+ac=2006\left(a,b,c\in Z\right)\)
\(CM:P=\left(a^2+2006\right)\left(b^2+2006\right)\left(c^2+2006\right)\)là số chính phương
ta có: \(a^2+2006=a^2+ab+bc+ca=\left(a+c\right)\left(a+b\right).\)
\(b^2+2006=b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)
\(c^2+2006=c^2+ab+bc+ca=\left(a+c\right)\left(b+c\right)\)
=> \(P=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
mà a,b,c thuộc Z nên P là số chính phương
Cho a, b, c là các số thực khác 0 và \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\). Tính giá trị của biểu thức \(P=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)\left(c^{2006}-a^{2006}\right)\).