tinh 1+3/2^3+4/2^4+...+`00/2^100
tinh a=1+3/2^3+4/2^4+...+100/2^100
A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101=
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101 =
=(2^101 -1)/2^100 - 100/2^101
=> A= (2^101 -1)/2^99 - 100/2^100
tinh A=1+3/2^3+4/2^4+....+100/2^100
tinh A=1+3/2^3+4/2^4+....+100/2^100
minh biet lam ne nhung ban phai cho minh nhe
ai giup minh lam bai nay voi
thanks nhieu
\(A=\frac{1}{1}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)
\(\frac{1}{2}A=\frac{1}{2}.\left(\frac{1}{1}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)\)
\(\frac{1}{2}A=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+...+\frac{100}{2^{101}}\)
\(\frac{1}{2}A-A=\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)-\left(\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+...+\frac{100}{2^{101}}\right)\)
\(\frac{1}{2}A=1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}-\frac{1}{2}-\frac{3}{2^4}-\frac{4}{2^5}-...-\frac{100}{2^{101}}\)
\(\frac{1}{2}A=\frac{1}{2}+\frac{3}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)
\(\frac{1}{2}A=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{100}}\right)-\frac{100}{2^{101}}\)
\(\frac{1}{2}A=\frac{\left[\frac{1}{2}-\left(\frac{1}{2}\right)^{101}\right]}{\frac{1}{2}}-\frac{100}{2^{101}}\)
A=2
tinh A=1+3/2^3+4/2^4+....+100/2^100
Tinh
B=1/2+2/2^2+3/2^3+4/2^4+.....+99/2^99+100/2^100
\(B=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+.......+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\)
\(\Leftrightarrow2B=1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+\dfrac{3}{2^4}+........+\dfrac{98}{2^{99}}+\dfrac{99}{2^{100}}\)
\(\Leftrightarrow2B-B=\left(1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+........+\dfrac{99}{2^{100}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+......+\dfrac{100}{2^{100}}\right)\)
\(\Leftrightarrow B=\dfrac{1}{2}+\dfrac{1}{2^2}+..........+\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)
Đặt :
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{99}}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+......+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{100}}\)
\(\Leftrightarrow B=1-\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)
\(\Leftrightarrow B=\dfrac{2^{100}-101}{2^{100}}\)
tinh
A=1/1+2+1/1+2+3+1/1+2+3+4+...................+1/1+2+3+4+...............+100
A=99-(1/2 + 1/3+1/4+...+1/100) : (1/2+2/3+3/4+...+99/100)
tinh gia tri cua A.
Tinh tong
1/ 1+(-2)+3+(-4)+...+19+(-20)
2/1-2+3-4+...+99-100
3/2-4+6-8+..+48-50
4/-1+3-5+7+...+97-99
5/1+2-3-4+...+97+98-99-100
1/
Đặt A = 1+(-2)+3+(-4)+...+19+(-20)
A = ( 1+3+5+... + 19 ) - ( 2+4+6+... + 20 )
Mỗi nhóm trên có số hạng là:
( 19-10):2+1 = 10 số hạng
A = ( 1+19 ).10:2 - ( 20+2).10:2
A = 100 - 110
A = -10
2/
1 - 2 + 3 - 4 + ... + 99 - 100
= ( 1 - 2 ) + ( 3 - 4 ) + ... + ( 99 - 100 )
= ( - 1 ) + ( - 1 ) + ... + ( - 1 )
Từ 1 → 100 có 100 số hạng mà chia 2 số 1 nhóm
⇒ Số nhóm là:
100 : 2 = 50
mà mỗi nhóm bằng - 1
⇒ Tổng = - 50.
3/
a, 2-4+6-8+...+48-50
= ( 2-4)+( 6-8)+...+( 48-50)
= -2-2-...-2
= ( -2). 12
= -24
4/
-1+2-5+7-..+97-99
=(-1-99)+(-3-97)+...+(-49-51)
=(-100)+(-100)+...+(-100)
Có 50 cặp -100
Nên Tổng bằng : -100.50=-5000
Vậy....=-5000
5/
1+2-3-4+.....+97+98-99-100
=1+(2-3-4)+5+.....+97+(98-99-100)
=1+0+0+0+......+0+(-101)
=1+(-101)
=-100
4.tinh tong
1/ 1+(-2)+3+(-4)+...+19+(-20)
2/ 1-2+3-4+...+99-100
3/ 2-4+6-8+...+48-50
4/ -1+3-5+7-...+97-99
5/1+2-3-4+...+97+98-99-100
Ta có : 1 + (-2) + 3 + (-4) + ...... + 19 + (-20)
= [1 + (-2)] + [3 + (-4)] + ...... + [19 + (-20)]
= -1 + -1 + -1 + ..... + -1
= -1.10
= -10