cho 4 số thức a,b,c,d thõa mãn các điều kiện \(a\ne0\) và 4a+2b+c+d=0. chứng minh \(b^2\ge4ac+4ad\)
Bài 1:Giải các phương trình sau:
a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)
b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)
d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)
e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)
Bài 2:Cho a,b,c thỏa mãn a+b+c=1
Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)
Bài 3:Giải hệ phương trình:
\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)
Bài 4:Tìm các cặp số nguyên (x;y) thỏa mãn:
\(x^2+2y^2+2xy-5x-5y=-6\)
Để (x+y) nguyên
Bài 5:Cho các số thực x,y,z thỏa mãn điều kiện
\(x+y+z+xy+yz+xz=6\)
Chứng minh rằng \(x^2+y^2+z^2\ge3\)
Bài 6:Cho 4 số thực a,b,c,d thỏa mãn các điều kiện:
\(a\ne0\)\(4a+2b+c+d=0\)
Chứng minh \(b^2\ge4ac+4ad\)
Bài 7:Với ba số thực a,b,c thỏa mãn điều kiện \(a\left(a-b+c\right)< 0\)Chứng minh phương trình \(ax^2+bx+c=0\)(ẩn x) luôn có hai nghiệm phân biệt
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
Có bạn nào biết giải câu f ko giải hộ mình với
cho 4 số thực a,b,c, d thỏa mãn các điều kiện a khac 0 va 4a+2b+c+d=0
cm:b2lớn hơn hoặc bằng 4ac+4ad
cho các số nguyên a,b,c,d thõa mãn các điều kiện
a+b=c+d và ab+1=cd
chứng minh c=d
\(a=b=c+d\Rightarrow\hept{\begin{cases}b\left(a+b=b\left(c+d\right)\right)\\ab+b^2=bc+bd\end{cases}}\)
Mà : \(ab+1=cd\)
Do đó : \(\left(ab+b^2\right)-\left(ab+1\right)=bc+bd-cd\)
\(\Leftrightarrow ab+b^2-ab-1=bc+bd-cd\)
\(\Leftrightarrow b^2-bc-bd+cd=1\)
\(\Leftrightarrow b\left(b-c\right)-d\left(b-c\right)=1\)
\(\Leftrightarrow\left(b-c\right)\left(b-d\right)=1\)
\(\Leftrightarrow\orbr{\begin{cases}b-c=b-d=1\\b-c=b-d=1\end{cases}}\)
\(\Rightarrow c=d\)
Cho các số a,b,c,d thõa mãn điều kiện:\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)và a+b+c+d khác 0.Chứng minh rằng a=b=c=d
Các số a, b, c, d thõa mãn điều kiện:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\) và \(a+b+c+d\ne0\).
Chứng tỏ rằng a = b = c = d.
Các số a, b, c, d thõa mãn điều kiện:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\) và \(a+b+c+d\ne0\)
Chứng tỏ rằng a = b = c = d.
Áp dụng tính chất dãy tỉ số bằng nhau \(\Rightarrow\frac{a}{3\cdot b}=\frac{b}{3\cdot c}=\frac{c}{3\cdot d}=\frac{d}{3\cdot a}=\frac{a+b+c+d}{3\cdot b+3\cdot c+3\cdot d+3\cdot a}=\frac{a+b+c+d}{3\cdot\left(a+b+c+d\right)}=\frac{1}{3}\)
\(\Rightarrow a=\frac{1}{3}\cdot3\cdot b;b=\frac{1}{3}\cdot3\cdot c;c=\frac{1}{3}\cdot3\cdot d;d=\frac{1}{3}\cdot3\cdot a\)\(\Rightarrow a=b;b=c;c=d;d=a\Rightarrow a=b=c=d\)(đpcm)
a) Cho (7a - 11b)* ( 4c + 5d )= (4a + 5b)* (7c -11d). Chứng minh : a/b = c/d
b) Cho 4 số tự nhiên a,b,c,d thỏa mãn a + c = 2b và 1/c= 1/2* (1/b + 1/d)
Chứng minh 4 số trên lặp thành 1 tỉ lệ thức
Cho số a và ba số b, c, d khác a và thỏa mãn điều kiện c + d = 2b. Giải phương trình
x/(a-b)(a-c) - 2x/(a-b)(a-d) + 3x/(a-c)(a-d) = 4a/(a-c)(a-d)
\(\frac{x}{\left(a-b\right)\left(a-c\right)}-\frac{2x}{\left(a-b\right)\left(a-d\right)}+\frac{3x}{\left(a-c\right)\left(a-d\right)}=\frac{4a}{\left(a-c\right)\left(a-d\right)}\)
\(\Leftrightarrow\frac{x\left(a-d\right)-2x\left(a-c\right)+3x\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(a-d\right)}=\frac{4a\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(a-d\right)}\)
\(\Leftrightarrow x\left(a-d-2a+2c+3a-3b\right)=4a\left(a-b\right)\)
\(\Leftrightarrow x\left(2a-3b+2c-d\right)=4a\left(a-b\right)\)
Theo giả thiết ,b + d = 2c nên 2a - 3b + 2c - d = 2a - 2b = 2(a-b) .Do đó phương trình đã cho tương đương với phương trình2(a-b) x = 4a(a-b)
Để ý rằng a - b \(\ne\)0,ta thấy ngay phương trình cuối có nghiệm duy nhất x = 2a
Vậy phương trình đã cho có nghiệm duy nhất x = 2a
b+d=2c mà đề bài cho là c+d=2b mà bạn
Mình cho dạng tương tự đó bạn
Cho a,b là các số thõa mãn a>b>0 và a^3 - a^2b +ab^2- 6b^3=0 . Tính P = (a^4 - 4b^4)/(b^4 - 4a^4)
Ta có: \(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a^3-2a^2b\right)+\left(a^2b-2ab^2\right)+\left(3ab^2-6b^3\right)=0\)
\(\Leftrightarrow a^2\left(a-2b\right)+ab\left(a-2b\right)+3b^2\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\)
mà \(a^2+ab+3b^2>0\forall a>b>0\)
nên a-2b=0
hay a=2b
Ta có: \(P=\dfrac{a^4-b^4}{b^4-4a^4}\)
\(=\dfrac{\left(2b\right)^4-b^4}{b^4-4\cdot\left(2b\right)^4}=\dfrac{16b^4-b^4}{b^4-4\cdot16b^4}=\dfrac{15b^4}{-63b^4}=\dfrac{-5}{21}\)