Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nam Đinh Doãn
Xem chi tiết
senorita
2 tháng 4 2019 lúc 21:23

 Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)

        \(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)

\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)

 Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^

Nam Đinh Doãn
4 tháng 4 2019 lúc 17:16

Có bạn nào biết giải câu f ko giải hộ mình với

Đỗ Thị Ánh Nguyệt
Xem chi tiết
Đặng Thị Thanh Tâm
Xem chi tiết
Ngoc Han ♪
3 tháng 2 2020 lúc 19:14

\(a=b=c+d\Rightarrow\hept{\begin{cases}b\left(a+b=b\left(c+d\right)\right)\\ab+b^2=bc+bd\end{cases}}\)

Mà : \(ab+1=cd\)

Do đó : \(\left(ab+b^2\right)-\left(ab+1\right)=bc+bd-cd\)

\(\Leftrightarrow ab+b^2-ab-1=bc+bd-cd\)

\(\Leftrightarrow b^2-bc-bd+cd=1\)

\(\Leftrightarrow b\left(b-c\right)-d\left(b-c\right)=1\)

\(\Leftrightarrow\left(b-c\right)\left(b-d\right)=1\)

\(\Leftrightarrow\orbr{\begin{cases}b-c=b-d=1\\b-c=b-d=1\end{cases}}\)

\(\Rightarrow c=d\)

Khách vãng lai đã xóa
Tran Thai Han Thuyen
Xem chi tiết
Vương Quốc Anh
Xem chi tiết
Vương Quốc Anh
Xem chi tiết
Do Nam
2 tháng 12 2015 lúc 21:45

Áp dụng tính chất dãy tỉ số bằng nhau \(\Rightarrow\frac{a}{3\cdot b}=\frac{b}{3\cdot c}=\frac{c}{3\cdot d}=\frac{d}{3\cdot a}=\frac{a+b+c+d}{3\cdot b+3\cdot c+3\cdot d+3\cdot a}=\frac{a+b+c+d}{3\cdot\left(a+b+c+d\right)}=\frac{1}{3}\)

\(\Rightarrow a=\frac{1}{3}\cdot3\cdot b;b=\frac{1}{3}\cdot3\cdot c;c=\frac{1}{3}\cdot3\cdot d;d=\frac{1}{3}\cdot3\cdot a\)\(\Rightarrow a=b;b=c;c=d;d=a\Rightarrow a=b=c=d\)(đpcm)

meobeo1234
Xem chi tiết
Lê Trọng Đại
Xem chi tiết
✰๖ۣۜŠɦαɗøω✰
12 tháng 4 2020 lúc 15:18

\(\frac{x}{\left(a-b\right)\left(a-c\right)}-\frac{2x}{\left(a-b\right)\left(a-d\right)}+\frac{3x}{\left(a-c\right)\left(a-d\right)}=\frac{4a}{\left(a-c\right)\left(a-d\right)}\)

\(\Leftrightarrow\frac{x\left(a-d\right)-2x\left(a-c\right)+3x\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(a-d\right)}=\frac{4a\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(a-d\right)}\)

\(\Leftrightarrow x\left(a-d-2a+2c+3a-3b\right)=4a\left(a-b\right)\)

\(\Leftrightarrow x\left(2a-3b+2c-d\right)=4a\left(a-b\right)\)

Theo giả thiết ,b + d = 2c nên 2a - 3b + 2c - d = 2a - 2b = 2(a-b) .Do đó phương trình đã cho tương đương với phương trình2(a-b) x = 4a(a-b)

Để ý rằng a - b \(\ne\)0,ta thấy ngay phương trình cuối có nghiệm duy nhất x = 2a

Vậy phương trình đã cho có nghiệm duy nhất x = 2a

Khách vãng lai đã xóa
Lê Trọng Đại
12 tháng 4 2020 lúc 17:30

b+d=2c mà đề bài cho là c+d=2b mà bạn

Khách vãng lai đã xóa
✰๖ۣۜŠɦαɗøω✰
12 tháng 4 2020 lúc 17:32

Mình cho dạng tương tự đó bạn

Khách vãng lai đã xóa
Khang Nè
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 1 2021 lúc 22:11

Ta có: \(a^3-a^2b+ab^2-6b^3=0\)

\(\Leftrightarrow\left(a^3-2a^2b\right)+\left(a^2b-2ab^2\right)+\left(3ab^2-6b^3\right)=0\)

\(\Leftrightarrow a^2\left(a-2b\right)+ab\left(a-2b\right)+3b^2\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\)

mà \(a^2+ab+3b^2>0\forall a>b>0\)

nên a-2b=0

hay a=2b

Ta có: \(P=\dfrac{a^4-b^4}{b^4-4a^4}\)

\(=\dfrac{\left(2b\right)^4-b^4}{b^4-4\cdot\left(2b\right)^4}=\dfrac{16b^4-b^4}{b^4-4\cdot16b^4}=\dfrac{15b^4}{-63b^4}=\dfrac{-5}{21}\)