các bạn giúp mình với ạa
giải giúp mình với ạa , mình cảm ơn.
Xét tg ABO và tg ACO có
AO chung
AB=AC (gt)
OB=OC=R
=> tg ABO = tg ACO (c.c.c)
\(\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\Rightarrow AC\perp OC\) => AC là tiếp tuyến với (O)
b/
Xét tg vuông EOI và tg vuông COI có
OE=OC=R; OI chung => tg EOI = tg COI (hai tg vuông có 2 cạnh góc vuông bằng nhau)
Xét tg vuông EDI và tg vuông CDI có
DI chung
tg EOI = tg COI (cmt) => IE=IC
=> tg EDI = tg CDI (hai tg vuông có 2 cạnh góc vuông bằng nhau)
Xét tg DEO và tg DCO có
DO chung
OE=OC=R
tg EDI = tg CDI (cmt) => DE=DC
=> tg DEO = tg DCO (c.c.c)
\(\Rightarrow\widehat{DEO}=\widehat{DCO}=90^o\Rightarrow DE\perp OE\) => DE là tiếp tuyến với (O, R)
giải giúp mình với ạa , mình cảm ơn.
a: ΔOBC cân tại O
mà OA là đường cao
nên OA là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O)
b: Ta có: \(\widehat{KOA}+\widehat{BOA}=\widehat{KOB}=90^0\)
\(\widehat{KAO}+\widehat{COA}=90^0\)(ΔOCA vuông tại C)
mà \(\widehat{BOA}=\widehat{COA}\)
nên \(\widehat{KOA}=\widehat{KAO}\)
=>KA=KO
d: Xét (O) có
\(\widehat{ACI}\) là góc tạo bởi tiếp tuyến CA và dây cung CI
\(\widehat{CDI}\) là góc nội tiếp chắn cung CI
Do đó: \(\widehat{ACI}=\widehat{CDI}\)
ΔOCA vuông tại C
=>\(CO^2+CA^2=OA^2\)
=>\(CA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(CA=R\sqrt{3}\)
Xét ΔACI và ΔADC có
\(\widehat{ACI}=\widehat{ADC}\)
\(\widehat{CAI}\) chung
Do đó: ΔACI đồng dạng với ΔADC
=>\(\dfrac{AC}{AI}=\dfrac{AD}{AC}\)
=>\(AI\cdot AD=AC^2=\left(R\sqrt{3}\right)^2=3R^2\) không đổi

mng giúp mình với ạa
mn giúp mình với ạa
`#3107.101107`
2.
a)
`(x - 2y)^2 = x^2 - 2*x*2y + (2y)^2 = x^2 - 4xy + 4y^2`
`=> -2xy -> -4xy`
b)
`(4a + 3b)^2 = (4a)^2 + 2*4a*3b + (3b)^2 = 16a^2 + 24ab + 9b^2`
`=>` `a^2 -> 16a^2`; `b^2 -> 9b^2`
c)
`9x^2 + 6xy + y^2 = (3x)^2 + 2*3x*y + y^2 = (3x + y)^2`
`=>` `(3x - y)^2 -> (3x + y)^2`
d)
`(a - 2b)^3 = a^3 - 3*a^2*2b + 3*a*(2b)^2 - (2b)^3 = a^3 - 6a^2b + 12ab^2 - 8b^3`
`=>` `-8a^2b -> -6a^2b`; `6ab^2 -> 12ab^2.`
mn giúp mình với ạa
1 What is the largest group of 54 ethnic groups of VN?
2 Why is this dish called five-coloured sticky rice?
3 How many ethnic groups are there in VN?
4 Who wear a V-shaped front collar T-shirt?
5 Where do the Dao live mainly ?
giải giúp mình với ạa
PHẦN II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Câu 1: Cho biểu thức \( P = \frac{\sin^2 x + 3 \sin x \cos x - 4 \cos^2 x}{\tan x - 1} \). Xét tính đúng sai của các khẳng định sau:
a) \(\frac{1}{\cos^2 x} = \tan^2 x + 1\).
b) Biểu thức \( A = \sin^2 x + 3 \sin x \cos x - 4 \cos^2 x \) được viết lại \( A = \frac{\tan^2 x + 3 \tan x - 4}{1 + \tan^2 x} \).
c) Rút gọn biểu thức \( P \) ta được \( P = \frac{\tan x + 4}{1 + \tan^2 x} \).
d) Giá trị của biểu thức \( P \) bằng \(\frac{\sqrt{3}}{4}\) khi \(\cos x = \frac{1}{2}\).
Câu 2: Cho \( A = \frac{\tan^2 x - \sin^2 x + (\sin x + \cos x)^2 - 1}{\tan^2 x \sin^2 x} \) và biểu thức \( B = 1 + 2 \cot^3 x \). Xét tính đúng sai của các khẳng định sau:
a) Biểu thức \((\sin x + \cos x)^2\) bằng \(1 - 2 \sin x \cos x\).
b) \(\tan^2 x - \sin^2 x\) được viết lại \(\tan^2 x \sin^2 x\).
c) Biểu thức \( A \) được đưa về dạng \( A = \frac{\tan^2 x \sin^2 x + 2 \sin x \cos x}{\tan^2 x \sin^2 x} \).
d) Biểu thức \( A \) bằng \( B \).
--------------------HẾT--------------------
Câu 1:
a: Đúng
b: \(A=\sin^2x+3\cdot\sin x\cdot cosx-4\cdot cos^2x\)
\(=1-cos^2x-4\cdot cos^2x+3\cdot\sin x\cdot cosx\)
\(=1-5\cdot cos^2x+3\cdot\sin x\cdot cosx\)
=>\(\frac{1-5\cdot cos^2x+3\cdot\sin x\cdot cosx}{cos^2x}=\frac{1}{cos^2x}-5+3\cdot\frac{\sin x}{cosx}\)
\(=\tan^2x+1-5+3\cdot\tan x=\tan^2x+3\cdot\tan x-4\)
=>\(A\cdot\left(\tan^2x+1\right)=\tan^2x+3\cdot\tan x-4\)
=>\(A=\frac{\tan^2x+3\cdot\tan x-4}{\tan^2x+1}\)
=>Đúng
c: \(P=\frac{\sin^2x+3\cdot\sin x\cdot cosx-4\cdot cos^2x}{\tan x-1}\)
\(=\frac{\tan^2x+3\cdot\tan x-4}{\tan^2x+1}:\left(\tan x-1\right)=\frac{\left(\tan x+4\right)\left(\tan x-1\right)}{\left(\tan x-1\right)\left(\tan^2x+1\right)}=\frac{\tan x+4}{\tan^2x+1}\)
=>Đúng
d: \(\frac{1}{cos^2x}=\tan^2x+1\)
=>\(\tan^2x+1=\frac{1}{\left(\frac12\right)^2}=1:\frac14=4\)
=>\(\tan^2x=3\)
=>\(tanx=\sqrt3\) hoặc \(tanx=-\sqrt3\)
\(P=\frac{\tan x+4}{1+\tan^2x}=\frac{\tan x+4}{4}\)
Khi tan x=\(\sqrt3\) thì \(P=\frac{4+\sqrt3}{4}\)
Khi tan x=-\(\sqrt3\) thì \(P=\frac{4-\sqrt3}{4}\)
=>Sai
Câu 2:
a: \(\left(\sin x+cosx\right)^2=\sin^2x+cos^2x+2\cdot\sin x\cdot cosx\)
\(=1+2\cdot\sin x\cdot cosx\)
=>Đúng
b: \(\tan^2x-\sin^2x\)
\(=\frac{\sin^2x}{cos^2x}-\sin^2x=\sin^2x\left(\frac{1}{cos^2x}-1\right)\)
\(=\sin^2x\cdot\frac{1-cos^2x}{cos^2x}=\sin^2x\cdot\frac{\sin^2x}{cos^2x}=\sin^2x\cdot\tan^2x\)
=>Đúng
c: Sai
d: \(A=\frac{\tan^2x-\sin^2x+\left(\sin x+cosx\right)^2-1}{\tan^2x\cdot\sin^2x}\)
\(=\frac{\tan^2x\cdot\sin^2x-2\cdot\sin x\cdot cosx}{\tan^2x\cdot\sin^2x}=1-\frac{2}{\sin x}\cdot\frac{cosx}{\tan^2x}=1-\frac{2}{\sin x}\cdot\frac{cosx\cdot cos^2x}{\sin^2x}\)
\(=1-\frac{2\cdot cos^3x}{\sin^3x}=1-2\cdot\cot^3x\)
=>Sai
mn giúp mình với ạa mình đang cần gấp
Giúp mình với ạa❤❤
1 It took us 2 hours to write this letter
2 It takes me a day to paint this house
3 The weather is so cold that we couldn't go out
4 My friend is so sick that he can't go to school
5 You'd better not drink too much coffee
6 The stomachache prevented Mr Thanh from enjoying the meal
7 The children enjoyed walking in the rain
8 What a beautiful house
Giúp mình bài 5 với ạa