Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thị Hải Yến
Xem chi tiết
Yến Vũ
Xem chi tiết
Đào Lê Anh Thư
4 tháng 7 2017 lúc 21:33

a/ ta có \(\hept{\begin{cases}\widehat{ACE}=\widehat{BCE}=\widehat{\frac{ACB}{2}}\\\widehat{ABD}=\widehat{CBD}=\widehat{\frac{ABC}{2}}\end{cases}}\)( tia phân giác )

mà \(\widehat{ACB}=\widehat{ABC}\)( tam giác cân)

nên ACE=BCE=ABD=CBD

xét tam giác ABD và tam giác ACE có

ABD=ACE(cmt) ; góc A chung ; AB=AC(tam giác cân)

=> tam giác ABD=tam giác ACE (G-C-G) => BD=CE

b/ ta có BCE=CBD (cmt) => tam giác BIC cân tại I

xét tam giácBIE và tam giác CID có

BI=IC(tam giác BIC cân) ; BIE=ICD(ABD=ACE) ; BIE=CID(2 góc đối đỉnh)

=> tam giác BIE= tam giác CID (G-C-G)

c/ ta có BD, CE là tia p/g cắt nhau tại I => I là gđ của 3 đg phân giác của tam giác ABC

=> AI là tia phân giác của BAC 

ta có AB=AE+BE ; AC=AD+DC 

mà BE=CD ( tam giác BIE= tam giác CID) ; AB=AC (tam giác ABC cân)

nên AE=AD => tam giác AED cân 

mặt khác AI là tia phân giác => AI là đường cao => AI vuông góc vs ED

ta có \(\hept{\begin{cases}\widehat{AED}=\frac{180^0-\widehat{A}}{2}\\\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\end{cases}}\)(tam giác cân)

=> AED=ABC

mà 2 góc nằm ở vị trí đồng vị => ED//BC 

Nguyễn Thị Hòa
4 tháng 7 2017 lúc 21:45

A B C E D I

A) Ta có \(\Delta\)ABC cân tại A =>góc ABC= góc ACB => \(\frac{1}{2}\)góc ABC =\(\frac{1}{2}\)góc ACB => góc DBC = góc ECB = góc DBE = góc DCE  

Xét \(\Delta\)ECB và \(\Delta\)DBC có

-góc DBC = góc ECB

- BC chung 

-góc EBC = góc DCB

=> \(\Delta\)ECB = \(\Delta\)DBC ( g.c.g )

=> CE =BD

B, Ta có góc IBC = góc ICB ( góc DBC =góc ECB chứng minh trên )

=> \(\Delta\)IBC cân tại I => BI = CI

Xét \(\Delta\)BIE và \(\Delta\)CID có 

- góc BIE = góc CID ( 2 góc đối đỉnh )

- IB =CI ( chứng minh trên )

- góc IBE =ICD ( chứng minh trên ý a )

=> \(\Delta\)BIE =\(\Delta\)CID (g.c.g)

C, Ta có AB =AC ( \(\Delta\)ABC cân tại A )

Mà BE =CD ( \(\Delta\) EBD =\(\Delta\)DCE )

=> AE =AD (1)

Lại có BD =CE ( chứng minh trên ý a )

Mà BI =CI ( chứng minh trên )

=> EI =ID (2)

Từ (1) và (2) => AI là đường trung trực của ED 

=> AI \(⊥\)ED 

Ta có \(\Delta\)EAD cân tại A có Ai là đường phân giác => góc EAI = góc DAI 

Lại có \(\Delta\)ABC cân tại A có AI là tia phân giác đồng thời là đường cao => AI \(⊥\)BC

\(\hept{\begin{cases}AI⊥DE\\AI⊥BC\end{cases}}\)

=> ED sog sog BC

Chúc bạn học giỏi 

 Kết bạn với mình nha 

Tăng Thế Đạt
12 tháng 3 2020 lúc 16:00

bnbnbnbn

Khách vãng lai đã xóa
neko Miru
Xem chi tiết
Lê Bùi Quang Đức Anh
Xem chi tiết
Lê Bùi Quang Đức Anh
4 tháng 3 2023 lúc 16:12

Câu này làm thế nào vậy mn

giúp mình với

 

subjects
4 tháng 3 2023 lúc 17:47

xét ΔECB và ΔDBC, ta có : 

EC = BD (gt)

\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)

BC là cạnh chung

=> ΔECB = ΔDBC (c.g.c)

=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)

vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)

subjects
4 tháng 3 2023 lúc 17:47

loading...

Trang Nghiêm
Xem chi tiết
Yến Chử
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 3 2023 lúc 13:49

DG+EG=1/3BD+1/3CE=2/3BD=BG>1/2BC

Huỳnh Nguyễn Tuấn Nam
Xem chi tiết
Pain Địa Ngục Đạo
18 tháng 3 2018 lúc 11:35

cái thể loại 0 điểm hỏi đáp , đăng toán hình mà éo vẽ hình không = rác rưởi

Công Chúa Yêu Văn
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
19 tháng 7 2017 lúc 8:29

a) Ta có : \(\Delta\)ABC cân tại A =.>AB=AC mà BD là trung tuyến  =.>AD=DC ;CE là trung tuyến => AE=EB

=> AE=AD 

=>\(\Delta\)AED cân tại a

Trần Hữu Minh Trí
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 4 2023 lúc 15:24

Gọi giao của BD và CE là G

=>G là trọngtâm của ΔABC

=>BG=2/3BD; CG=2/3CE
mà BD=CE

nên GB=GC

Xét ΔEBC và ΔDCB có

BC chung

góc ECB=góc DBC

EC=DB

=>ΔEBC=ΔDCB

=>góc EBC=góc DCB

=>ΔABC cân tại A

D.Khánh Đỗ
Xem chi tiết