Gọi giao của BD và CE là G
=>G là trọngtâm của ΔABC
=>BG=2/3BD; CG=2/3CE
mà BD=CE
nên GB=GC
Xét ΔEBC và ΔDCB có
BC chung
góc ECB=góc DBC
EC=DB
=>ΔEBC=ΔDCB
=>góc EBC=góc DCB
=>ΔABC cân tại A
Gọi giao của BD và CE là G
=>G là trọngtâm của ΔABC
=>BG=2/3BD; CG=2/3CE
mà BD=CE
nên GB=GC
Xét ΔEBC và ΔDCB có
BC chung
góc ECB=góc DBC
EC=DB
=>ΔEBC=ΔDCB
=>góc EBC=góc DCB
=>ΔABC cân tại A
cho tam giác ABC có BD và CE là đường trung tuyến cắt nhau tại G. Biết BD=CE
a,chứng minh BG=CG;DG=GE
b,chứng minh tam giác ABC cân
Cho tam giác ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G . Biết BD = CE
a) Chứng minh tam giác GBC là tam giác cân
b) Chứng minh DG + EG > 1/2 BC
Cho tam giác ABC vuông tại A có 2 đường trung tuyến BD và CE cắt nhau tại . B+BD=CE. Chứng minh tam giác ABC cân tại A
cho tam giác ABC có BD và CE là đường trung tuyến cắt nhau tại G.Biết BD=CE.
a, chứng minh BG =CG;DG=GE
B,chứng minh tam giác ABC cân
bài 4;cho tam giác ABC cân tại A . Đường trung tuyến BDvà CE cắt nhau tại G
a,chứng minh tam giác DGE cân
b, chứng minh BD+CE > 3/2 BC
1) tam giác ABC có các đường trung tuyến BD và CE bằng nhau . chứng minh rằng tam giác ABC là tam giác cân.
2)cho tam giác ABC cân ở A , AB=34cm , BC =32cm , và 3 trung tuyến AM , BN , CP đồng quy tại trọng tâm G
a) chúng minh AM vuông góc với
b) tính độ dài AM , BN ,CP (làm trong kết quả đến chữ số thập phân thứ 2)
cho tam giác ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G. Biết BD=CE. Chứng minh DG+EG > \(\dfrac{1}{2} \)BC
Cho tam giác ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G. chứng minh rằng tam giác ABD bằng tam giác ACE, tam giác GBD là tam giác cân và 4GD bé hơn BC
Cho tam giác ABC cân tại A; hai đường trung tuyến CE và BD giao nhau tại G.
a) Chứng minh tam giác ABD= tam giác ACE; BD= CE.
b) Chứng minh tia AG là phân giác của góc A
c) Gọi K là trung điểm của AG; I là trung điểm của CG. Chứng minh BD; CK; AI đồng quy.