2015\(\sqrt{2015x-2014}\) + \(\sqrt{2016x-2015}\) = 2016
^^
giải pt:
\(2015\sqrt{2015x-2014}+\sqrt{2016x-2015}=2016\)
Khó qúa, Ai giải giùm với
??
\(2015\sqrt{2015x-2014}+\sqrt{2016x-2015}=2016\)
ĐK:\(x\ge\frac{2015}{2016}\)
\(\Leftrightarrow2015\left(\sqrt{2015x-2014}-1\right)+\sqrt{2016x-2015}-1=0\)
\(\Leftrightarrow2015\frac{2015x-2014-1}{\sqrt{2015x-2014}+1}+\frac{2016x-2015-1}{\sqrt{2016x-2015}+1}=0\)
\(\Leftrightarrow2015\frac{2015x-2015}{\sqrt{2015x-2014}+1}+\frac{2016x-2016}{\sqrt{2016x-2015}+1}=0\)
\(\Leftrightarrow2015\frac{2015\left(x-1\right)}{\sqrt{2015x-2014}+1}+\frac{2016\left(x-1\right)}{\sqrt{2016x-2015}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2015^2}{\sqrt{2015x-2014}+1}+\frac{2016}{\sqrt{2016x-2015}+1}\right)=0\)
Dễ thấy: \(\frac{2015^2}{\sqrt{2015x-2014}+1}+\frac{2016}{\sqrt{2016x-2015}+1}>0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
1) Tìm giá trị lớn nhất nhỏ nhất của hàm số: \(f\left(x\right)=x+\frac{4}{x}\)với \(1\le x\le3\)
2) Rút gọn \(A=\sqrt{\frac{2015x+2016}{2016x-2015}}+\sqrt{\frac{2015x+2016}{2015-2016x}}+2017\)
Cho Các Số x;y;z thỏa mãn \(\frac{2015z-2016y}{2014}\)=\(\frac{2016x-2014z}{2015}\)=\(\frac{2014y-2015x}{2016}\)
Tính Giá Trị Biểu Thức P=(x+2015)\(^{2016}\)+(y+2015)\(^{2016}\)+(z+2015)\(^{2016}\)
P(x)=x^2016-2015 x^2015-2015x^2014-...-2015x^2-2015x=1.tính P(2016)
P(x) = x2016 - 2015x2015 - 2015x2014 - ... - 2015x2 - 2015x
<=> P(x) = x2016 - 2016x2015 + x2015 - 2016x2014 + x2014 - ... - 2016x2 + x2 - 2016x + x
<=> P(2016) = 20162016 - 2016.20162015 + 20162015 - 2016.20162014 + 20162014 -...- 2016.20162 + 20162 - 2016.2016 + 2016
<=> P(2016)=20162016 - 20162016 + 20162015 - 20162015 + 20162014 - ... - 20163 + 20162 - 20162 + 2016
<=> P(2016) = 2016
Vậy P(2016) = 2016
Ta có:
P(2016) = 20162016 - 2015 . 20162015 - 2015 . 20162014 -.....- 2015 . 20162 - 2015 . 2016 - 1
P(2016) = 20162016 - ( 2016 - 1 ) . 20162015 - ( 2016 -1 ) . 20162014 - ..... - ( 2016 - 1 ) . 20162 - ( 2016 - 1 ) . 2016 - 1
P(2016)= 20162016 - 20162016 + 20162015 - 20162015 + 20162014 - ..... - 20163 + 20162 - 20162 + 2016 - 1
P(2016) = 2016 - 1
P(2016) = 2015.
cái chỗ bằng 1 là cộng 1 đấy
tek tức là nó = 2017
đúng không
a) cho x,y,z thỏa mãn \(\frac{2015z-2016y}{2014}\)= \(\frac{2016x-2014z}{2015}\) = \(\frac{2014y-2015x}{2015}\) và x-3y+2=2015
b) tìm giá trị của biểu thức P=(x+2015)2016+(y+2015)2016+(z+2015)2016
RGBT:
E=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vô bài toán được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
\(=1-\frac{1}{\sqrt{2016}}\)
so sánh \(\sqrt{2015}-\sqrt{2014}\) và \(\sqrt{2016}-\sqrt{2015}\)
Ta có: \(\sqrt{2015}-\sqrt{2014}=\dfrac{2015-2014}{\sqrt{2015}+\sqrt{2014}}>\dfrac{2016-2015}{\sqrt{2016}+\sqrt{2015}}=\sqrt{2016}-\sqrt{2015}\)
Ta có: √2015−√2014=2015−2014√2015+√2014>2016−2015√2016+√2015=√2016−√2015
Tính A = x2016 - 2016.x2015 + 2016.x2014 - 2016.x2013 + ... + 2016x2 - 2016x +2016 tại x = 2015
x=2015
=> x+1=2016
=> A=x2016-(x+1).x2015+(x+1).x2014-(x+1).x2013+...+(x+1)x2-(x+1)x+2016
=x2016-x2016-x2015+x2015+x2014-x2014-x2013+...+x3+x2-x2-x+2016
=-x+2016
=-2015+2016
=1
Vậy A=1.
So sanh : \(\sqrt{2016}-\sqrt{2015}va\sqrt{\sqrt{2015}-}\sqrt{2014}\)