tìm x để giá trị biểu thức p= 3x^2-2/3x^2+1 là số nguyên
Tìm x để giá trị của biểu thức: P = \(\dfrac{3x^2-2}{3x^2+1}\) là số nguyên
Lời giải:
Bổ sung thêm ĐK $x$ nguyên
$P=\frac{(3x^2+1)-3}{3x^2+1}=1-\frac{3}{3x^2+1}$
Để $P$ là số nguyên thì $\frac{3}{3x^2+1}$ là số nguyên
$\Rightarrow 3x^2+1$ là ước dương của $3$
$\Rightarrow 3x^2+1\in\left\{1;3\right\}$
$\Rightarrow x^2\in\left\{0; \frac{2}{3}\right\}$
Vì $x$ nguyên nên $x^2=0$
$\Rightarrow x=0$
Thử lại thấy thỏa mãn.
Cho biểu thức: \(P=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}+\frac{3x+1-x^2}{3x}\)
1) rút gọn biểu thức P
2) tìm giá trị của P biết /x/=1/3
3) tìm các giá trị nguyên của x để biểu thức A có giá trị là số nguyên
Bài1: Cho biểu thức:
A= x^3 - 3x^2 + 4x - 1 / x-3
a) Tìm điều kiện xác định
b) Tìm giá trị nguyên của x để biểu thức có giá trị nguyên.
Bài 2:Cho biểu thức:
P= x^3 - 3x^2 + 6 / x^2 - 3x
a) Tìm điều kiện xác định
b) Tính giá trị của P khi x = 2
c) Tìm giá trị nguyên của x để P nhận giá trị nguyên
BÀI 1:
a) \(ĐKXĐ:\) \(x-3\)\(\ne\)\(0\)
\(\Leftrightarrow\)\(x\)\(\ne\)\(3\)
b) \(A=\frac{x^3-3x^2+4x-1}{x-3}\)
\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)
\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)
\(=x^2+4+\frac{11}{x-3}\)
Để \(A\)có giá trị nguyên thì \(\frac{11}{x-3}\)có giá trị nguyên
hay \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x-3\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-8\) \(2\) \(4\) \(14\)
Vậy....
cảm ơn bạn nha nhưng bạn có chắc là nó đúng ko
Tìm giá trị nguyên của biến x để tại đó giá trị của biểu thức là 1 số nguyên :\(\frac{3x^2-x+1}{3x+2}\)
\(A=\frac{3x^2-x+1}{3x+2}=\frac{3x^2-x-2}{3x+2}+\frac{3}{3x+2}=x-1+\frac{3}{3x+2}\)
A nguyên <=> 3 chia hết cho 3x+2<=>3x+2 là Ư(3)
Mà Ư(3)={+-1;+-3}
Ta có bảng sau:
3x+2 | -1 | 1 | -3 | 3 |
x | -1 | -1/3(L) | -5/3(L) | 1/3(L) |
Vậy x=-1 thì A nguyên
Tách phần nguyên của biểu thức sau, rồi tìm giá trị nguyên của x để giá trị của biểu thức cũng là 1 số nguyên:
\(\dfrac{4x^3-3x^2+2x-83}{x-3}\)
Tìm x nguyên để giá trị của mỗi biểu thức sau là số nguyên:
E = (3x2 - x + 3) : (3x + 2)
E=(3x2-x+3):(3x+2)=(x-1)+\(\frac{5}{3x+2}\)
\(E\varepsilon Z\Leftrightarrow5⋮\left(3x+2\right)\)\(\Leftrightarrow3x+2=Ư\left(5\right)=\left\{-5;-1;1;5\right\}\)
*\(3x+2=-5\Leftrightarrow x=\frac{-7}{3}\)
*\(3x+2=-1\Leftrightarrow x=-1\)
*\(3x+2=1\Leftrightarrow x=\frac{-1}{3}\)
*\(3x+2=5\Leftrightarrow x=1\)
\(E=\frac{3x^2-x+3}{3x+2}=\frac{3x^2+2x-3x-2+5}{3x+2}=\frac{x\left(3x+2\right)-\left(3x+2\right)+5}{3x+2}\)
\(=\frac{\left(x-1\right)\left(3x+2\right)+5}{3x+2}=x-1+\frac{5}{3x+2}\)
E nguyên khi x nguyên và \(\frac{5}{3x+2}\) nguyên => 5 chia hết cho 3x+2
<=>\(3x+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Leftrightarrow3x\in\left\{-7;-3;-1;3\right\}\)
<=>\(x\in\left\{-\frac{7}{3};-1;-\frac{1}{3};1\right\}\)
vì x nguyên nên x=-1 hoặc x=1
cái này chẳng cần phải tách , nhóm hạn từ như Trà My chỉ cần chia hai đa thức cùng biến đã sắp xếp
Tìm giá trị nguyên của biến x để tại đó giá trị của mỗi biểu thức sau là một số nguyên:
c)\(\frac{3x^3-4x^2+x-1}{x-4}\)
d) \(\frac{3x^2-x+1}{3x+2}\)
c) ĐKXĐ : \(x\ne4\)
Để biểu thức \(\frac{3x^3-4x^2+x-1}{x-4}\) nguyên với \(x\) nguyên thì :
\(3x^3-4x^2+x-1⋮x-4\)
\(\Leftrightarrow3x^3-12x^2+8x^2-32x+33x-132+131⋮x-4\)
\(\Leftrightarrow3x^2.\left(x-4\right)+8x.\left(x-4\right)+31.\left(x-4\right)+131⋮x-4\)
\(\Leftrightarrow131⋮x-4\)
\(\Leftrightarrow x-4\inƯ\left(131\right)\)
\(\Leftrightarrow x-4\in\left\{-1,1,131,-131\right\}\)
\(\Leftrightarrow x\in\left\{3,5,135,-127\right\}\)
d) ĐKXĐ : \(x\ne-\frac{3}{2}\)
Để biểu thức \(\frac{3x^2-x+1}{3x+2}\) nhận giá trị nguyên với \(x\) nguyên thì :
\(3x^2-x+1⋮3x+2\)
\(\Leftrightarrow3x^2+2x-3x-2+3⋮3x+2\)
\(\Leftrightarrow x.\left(3x+2\right)-\left(3x+2\right)+3⋮3x+2\)
\(\Leftrightarrow3⋮3x+2\)
\(\Leftrightarrow3x+2\inƯ\left(3\right)\)
\(\Leftrightarrow3x+2\in\left\{-1,1,-3,3\right\}\)
\(\Leftrightarrow x\in\left\{-1,-\frac{1}{3},-\frac{5}{3},\frac{1}{3}\right\}\) mà \(x\) nguyên
\(\Rightarrow x=-1\)
Câu 3. (1,0 điểm) Cho biểu thức P = 2/ 3x+2 + 1/ 2-3x - 4/ 4-9x2 với x= 2/3, x= -2/3
a) Rút gọn P
b) Tìm giá trị nguyên của x để biểu thức P có giá trị nguyên.
a: \(P=\dfrac{2}{3x+2}-\dfrac{1}{3x-2}+\dfrac{4}{9x^2-4}\)
\(=\dfrac{6x-4-3x-2+4}{\left(3x+2\right)\left(3x-2\right)}=\dfrac{3x-2}{\left(3x+2\right)\left(3x-2\right)}=\dfrac{1}{3x+2}\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên