Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trung iu toán
Xem chi tiết
Chip Chep :))) 😎
Xem chi tiết
boi đz
18 tháng 8 2023 lúc 8:38

1) 3n ⋮ 2n - 5

=> 2(3n) - 3(2n - 5)  ⋮ 2n - 5

=> 6n - 6n + 15 ⋮ 2n - 5

=> 15 ⋮ 2n - 5

=> 2n-5 ϵ Ư(15)

Ư(15) = {1;-1;3;-3;5;-5;15;-15}

=> n={3;2;4 ;1;5;0;10;-5}

Duong Duy
18 tháng 8 2023 lúc 8:51

nhớ nha

 

Duong Duy
18 tháng 8 2023 lúc 8:53

1) 3n ⋮ 2n - 5

=> 2(3n) - 3(2n - 5)  ⋮ 2n - 5

=> 6n - 6n + 15 ⋮ 2n - 5

=> 15 ⋮ 2n - 5

=> 2n-5 ϵ Ư(15)

Ư(15) = {1;-1;3;-3;5;-5;15;-15}

=> n={3;2;4 ;1;5;0;10;-5}

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 9 2017 lúc 9:11

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 10 2019 lúc 5:41

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

Hoàng Yến Nguyễn
Xem chi tiết
Akai Haruma
13 tháng 12 2021 lúc 15:55

Lời giải:
$M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+2}.2+2^{n+2}$

$=3^{n+1}(9+1)+2^{n+2}(2+1)$

$=3^{n+1}.10+2^{n+2}.3$

$=6.3^n.5+6.2^{n+1}=6(3^n.5+2^{n+1})\vdots 6$ (đpcm)

Vương Ngọc Uyển
Xem chi tiết
Ben 10
13 tháng 9 2017 lúc 16:47

1) Đặt A = n^5 - n = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n - 1)(n + 1)(n^2 + 1) 
Nếu n chia hết cho 5 ta dễ thấy đpcm 
Nếu n : 5 dư 1 => n = 5k + 1 
=> A = n.(5k + 1 - 1)(n + 1)(n^2 + 1) = n.5k.(n + 1)(n^2 + 1) chia hết cho 5 
Nếu n : 5 dư 2 => n = 5k + 2 
=> A = n(n - 1)(n + 1)[(5k + 2)^2 + 1] = n(n - 1)(n + 1)(25k^2 + 20k + 5) 
= 5n(n - 1)(n + 1)(5k^2 + 4k + 1) chia hết cho 5 
Nếu n : 5 dư 3 => n = 5k + 3 
=>A = n(n - 1)(n + 1)(25k^2 + 30k + 10) = 5n(n - 1)(n + 1)(5k^2 + 6k + 2) chia hết cho 5 
Nếu n : 5 dư 4 => n = 5k + 4 
=> A = n(n - 1)(5k + 5)(n^2 + 1) = 5n(n - 1)(k + 1)(n^2 + 1) chia hết cho 5 
Vậy trong tất cả trường hợp n^5 - n luôn chia hết cho 6 

2) Đặt B = n^3 - 13n = n^3 - n -12n = n(n - 1)(n + 1) - 12n 
Ta có : Trong 3 số nguyên liên tiếp tồn tại ít nhất 1 số chẵn và tồn tại ít nhất một số chia hết cho 3 nên tích của 3 số đó chia hết cho 2 và chia hết cho 3 mà (2;3) = 1 nên tích 3 số nguyên liên tiếp chia hết cho 6 
=> n(n - 1)(n + 1) chia hết cho 6 mà 12n chia hết cho 6 
=> n^3 - n chia hết cho 6 

3) n^3 + 23n = n^3 - n + 24n = n(n - 1)(n + 1) + 24n 
Tương tự câu 2 : n(n - 1)(n + 1) và 24n chia hết cho 6 
=> n^3 + 23n chia hết cho 6 

4)Đặt A = n(n + 1)(2n + 1) = n(n + 1)[2(n - 1) + 3] 
= 2n(n + 1)(n - 1) + 3n(n + 1) 
n(n + 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
2n(n + 1)(n - 1) chia hết cho 2 
=> A chia hết cho 2 
n(n + 1)(n - 1) là tích 3 số nguyên liên tiếp nên chia hết cho 3 
3n(n + 1) chia hết cho 3 
=> A chia hết cho 3 
Mà (2 ; 3) = 1 (nguyên tố cùng nhau) 
=> A chia hết cho 6 

5) Đặt A = 3n^4 - 14n^3 + 21n^2 - 10n 
Chứng minh bằng quy nạp 
Với n =1 => A = 0 chia hết cho 24 
Giả sử A chia hết 24 đúng với n = k 
Nghĩa là :A(k) = 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 
Ta phải chứng minh : 
A chia hết cho 24 đúng với n = k + 1 
Nghĩa là : 
A(k + 1) = 3(k + 1)^4 - 14(k + 1)^3 + 21(k + 1)^2 - 10(k + 1) 
Khai triển ta được : 
A = (3k^4 - 14k^3 + 21k^2 - 10k) + (12k^3 - 24k^2 + 12k) 
Ta phải chứng minh : 12k^3 - 24k^2 + 12k chia hết 24 
12k^3 - 24k^2 + 12k = 12k(k^2 - 2k + 1) 
= 12k(k - 1)^2 = 12k(k - 1)(k - 1) 
12 chia hết 12 
k(k - 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
=> 12k^3 - 24k^2 - 2k + 1 chia hết cho 24 
Mà 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 (giả thiết quy nạp) 
=> A(k + 1) chia hết 24 
Theo nguyên lý quy nạp => A chia hết cho 24 (đpcm) 

6) n = 2k + 1 với k thuộc Z 
A = n^2 + 4n + 3 = (2k + 1)^2 + 4(2k + 1) + 3 
= 4k^2 + 12k + 8 
= 4(k^2 + 3k + 2) 
= 4(k + 2k + k + 2) 
= 4(k + 1)(k + 2) 
4 chia hết cho 4 
(k +1)(k + 2) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
=> n^2 + 4n + 3 chia hết cho 4.2 = 8 với n lẻ 

7) n = 2k + 1 
Đặt A = n^3 + 3n^2 - n - 3 
= (2k + 1)^3 + 3(2k + 1)^2 - (2k + 1) - 3 
= 8k^3 + 24k^2 + 16k 
= 8k(k^2 + 3k + 2) 
= 8k(k^2 + k + 2k + 2) 
= 8k(k + 1)(k + 2) 
8 chia hết cho 8 
k(k + 1)(k + 2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6 
=> A chia hết cho 8.6 = 48 với n lẻ

Cao Ánh Dương
Xem chi tiết
༄NguyễnTrungNghĩa༄༂
7 tháng 10 2017 lúc 21:33

? Tìm n phải không bạn ?

Cao Ánh Dương
8 tháng 10 2017 lúc 22:11

Giúp tớ làm đi mà! Tìm n đấy! Tớ k cho

Đặng Nguyễn Thùy Dung
Xem chi tiết
Kiều Vũ Linh
11 tháng 10 2023 lúc 20:15

B = 3ⁿ⁺³ + 2ⁿ⁺³ + 3ⁿ⁺¹ + 2ⁿ⁺²

= (3ⁿ⁺³ + 3ⁿ⁺¹) + (2ⁿ⁺³ + 2ⁿ⁺²)

= 3ⁿ⁺¹.(3² + 1) + 2(2ⁿ⁺² + 2ⁿ⁺¹)

= 3ⁿ⁺¹.10 + 2.(2ⁿ⁺² + 2ⁿ⁺¹)

= 2.3ⁿ⁺¹.5 + 2.(2ⁿ⁺² + 2ⁿ⁺¹)

= 2.(3ⁿ⁺¹.6 + 2ⁿ⁺² + 2ⁿ⁺¹) ⋮ 2 (1)

B = (3ⁿ⁺³ + 3ⁿ⁺¹) + (2ⁿ⁺³ + 2ⁿ⁺²)

= 3.(3ⁿ⁺² + 3ⁿ) + 2ⁿ⁺².(2 + 1)

= 3.(3ⁿ⁺² + 3ⁿ) + 2ⁿ⁺².3

= 3.(3ⁿ⁺² + 3ⁿ + 2ⁿ⁺²) ⋮ 3 (2)

Từ (1) và (2) ⇒ B ⋮ 6

Đặng Nguyễn Thùy Dung
11 tháng 10 2023 lúc 20:08

Mng ơi giúp mình với ạ

Bùi Đức Huy
11 tháng 10 2023 lúc 20:08

                                                 a

Phan Hoàng Đức
Xem chi tiết
ngonhuminh
27 tháng 11 2016 lúc 16:03

\(\frac{2n^2+3n+3}{\left(n+2\right)}=\frac{2.\left(n+2\right)^2-5\left(n+2\right)+5}{n+2}sodu=5\)

Trần Minh Sơn
Xem chi tiết
Monkey D. Luffy
15 tháng 11 2021 lúc 16:21

Bài 2:

a, Gọi \(d=ƯCLN\left(3n+1,3n+10\right)\)

\(\Rightarrow3n+1⋮d;3n+10⋮d\\ \Rightarrow3n+10-3n-1⋮d\\ \Rightarrow9⋮d\)

Mà d lớn nhất nên \(d=9\)

Vậy ...

b, Gọi \(d=ƯCLN\left(2n+1,n+3\right)\)

\(\Rightarrow2n+1⋮d;n+3⋮d\\ \Rightarrow2n+1-2n-6⋮d\\ \Rightarrow-5⋮d\)

Mà d lớn nhất nên \(d=5\)

Vậy ...