So sánh A và B: A=(43^2+1)(3^4+1)(3^8+1)(3^16+1); B=3^32-1
So sánh 2 số A và B biết :
A = (3+1)(2^2+1)(3^4+1)(3^8+1)(3^16+1) và B = 3^32 - 1
Mình ghi nhầm đề bài 1 tí đề bài là :
So sánh 2 số A và B biết :
A = (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1) và B = 3^32 - 1
A = (2-1)(2+1)(2^2 + 1 ) (2^4 + 1 ) ( 2^8 + 1) ( 2^16 + 1)
A = (2^2 - 1)(2^2 + 1 ) ( 2^4 + 1 )(2^8 + 1 )(2^16 + 1)
A= ( 2^4 - 1 )( 2^4 + 1 )(2^8 + 1 )(2^16 + 1 )
A = (2^8 - 1 )(2^8 + 1 )(2^16 + 1 )
A = (2^16 - 1 )(2^16 + 1 )
A = 2^32 - 1 < 2^32 = B
Vậy A = B
k mik nka !
So sánh :
A= 4 x ( 3^2+1 ) x ( 3^4+1 ) x ( 3^8+1 ) x ( 3^16+1 ) và B= 3 ^32 -1
\(A=4.\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(=\frac{3^{32}-1}{2}< 3^{32}-1=B\)
Vậy \(A< B\)
A=80.(3^4+1)(3^8+1)(3^16+1)(3^32+1) và B=3^64 So sánh A và B
A= 80.(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A = (34 - 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A = (38 - 1)(38 + 1)(316 + 1)(332 + 1)
A = (316 - 1)(316 + 1)(332 + 1)
A = (332 - 1)(332 + 1)
A = 364 - 1 < 364 = B
=> A < B
So sánh 2 số bằng cách vận dụng hàng đẳng thức
a)A=2^16 và B=( 2+1)(2^2+1)(2^4+1)(2^8+1)
b)A=4(3^2+1)(3^4+1)...(3^64+1)và B=3^128 -1
SO SÁNH A = 3(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1 VÀ B =2^32
A = 3(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1
=(22-1)(22+1)(24+1)(28+1)(216+1)+1
=(24-1)(24+1)(28+1)(216+1)+1
=(28-1)(28+1)(216+1)+1
=(216-1)(216+1)+1
=232-1+1
=232 = B
vậy A=B
Bài 1 so sánh
A=2012×2014 và B=2013^2
A=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1) và B=3^32-1
A=2017^2-17^2 vàB= 2000^2
A=2012x2014=2012x(2012+2)=2012^2+4024
B=2013^2=(2012+1)^2=2012^2+2x2012+1=2012^2+2025
=>A<B
chúc bạn học tốt~~~
Bài 1 :
\(a)\)\(A=2012.2014=\left(2013-1\right)\left(2013+1\right)=2013^2-1< 2013^2=B\)
Vậy \(A< B\)
\(b)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(2A=3^{32}-1\)
\(A=\frac{3^{32}-1}{2}< 3^{32}-1=B\)
\(c)\)\(A=2017^2-17^2=\left(2017-17\right)\left(2017+17\right)=2000.2034>2000.2000=2000^2=B\)
Vậy \(A>B\)
so sánh A=3^32-1 và B=(3+1)(3^2+1)(3^8+1)(3^16+1)
Vậy A = B
tích mik nha mik se cho lời giải
so sánh A và B:
A= 332-1
B= (3+1)(32+1)(34+1)(38+1)(316+1)
B = ( 3 + 1 ).( 32 + 1 ).(34+1).(38+1).(316+1)
=> 2B = 2.(3+1).(32+1).(34+1).(38+1).(316+1)
=> ( 3 -1 ).(3+1).(32+1).(34+1).(38+1).(316+1)
=> ( 32-1).(32+1).(34+1).(38+1).(316+1)
=> ( 34-1).(34+1).(38+1).(316+1)
=> ( 38-1).(38+1).(316+1)
=> ( 316-1).( 316 + 1)
= 332-1
=> A = 332-1:2<332-1
so sánh :
a) A= 1999.2001 và B= 2000^2
b) 3.(2^2+1)(2^4+1)(2^8+1) và D= 2^16
a)
A = 1999.2001 = (2000-1)(2000+1)=20002-1
vì 20002 -1 < 20002 nên A<B