Bai 1 :Tim GTLN cua A = -|1,5 - x| - 2
Bai 1: Tim GTLN hoac GTNN neu co cua cac bt
a, D = -x2 - 4x
\(D=-x^2-4x\)
\(=-\left(x^2+4x\right)\)
\(=-\left(x^2+2.x.2+2^2-4\right)\)
\(=-\left[\left(x+2\right)^2-4\right]\)
\(=-\left(x+2\right)^2+4\)
Vì \(-\left(x+2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+2\right)^2+4\le4\forall x\)
\(\Rightarrow D\le4\forall Dx\)
Dấu ''=" xảy ra khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Vậy \(MAX_D=4\) khi \(x=-2.\)
bai 1:tim GTNN cua bieu thuc
A=x2+3x+7
B=(x-2)(x-5)(x2-7x-10)
bai 2:tim GTLN cua bieu thuc
A=11-10x-x2
B=[x-4](2-[x-4])
bai 3:tim x,y sao cho
A=2x2+9y2-6xy-6x-12y+2016 co GTNN
B=-x2+2xy-4y2+2x+10y-8 co GTLN
bai 4 :
a)cho x+y=3;x2+y2=5.tinh x3+y3
b)cho x-y=5;x2+y2=15.tinh x3-y3
Bai 1: Tim so nguyen x biet:
x+(x+1)+(x+2)+...+35=0
Bai 2: Tim GTLN:
a) 8-(x+2)^2=E
b) -|x+2|+10=F
Bai 3: Tim x \(\in\)Z:
a)(2x-4)(x+4)<0
b)(x+5)(3x-12)>0
Bai 11: Cho:
S=1-2+3-4+5-6+...+19-20
a) S co\(⋮\)2; 3; 5 khong?
b) Tim tat ca cac uoc cua S
chi tiet gi minh nha
Bai 1 : cho A = \(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)
a ) Rut gon A
b) Tim GTLN cua A
cho 2a^2+2b^2+4c^2+3 ab+ac+2bc=1,5. Tim GTNN, GTLN cua a+b+c+2012
cho x 0,y 0, x y 2012. a, tim GTLN cua A 2x 2 8xy 2y 2 x 2 2xy y 2 b, tim GTNN cua B 1 2012 x 2 1 2012 y 2
a)tim GTLN cua P=x^2/x^4+x^2+1
b)cho 4x+5y=40, tinh GTLN cua Q=xy
a) \(P=\frac{x^2}{x^4+x^2+1}\)
Vì x2; x4 và +1 đều lớn hơn hoặc bằng 0 với mọi x ( trừ 1 :v )
suy ra P >= với mọi x
Mà x2 < x4 + x2 + 1
suy ra P <= 1
Dấu "=" xảy ra <=> P = 1
<=> x2 = x4 + x2 + 1
<=> x4 + x2 + 1 - x2 = 0
<=> x4 + 1 = 0
<=> x4 = -1
mà x4 >= với mọi x
=> vô nghiệm
P.s : tìm đc Pmax khi <=> P = 0
<=> x2 = 0
<=> x = 0
Vậy Pmax = 0 <=> x = 0
Nhầm đoạn P.s :
Tìm đc Pmin nha bạn :v
lí luận >= 0 như trên ta có P >= 0 với mọi x
Dấu "=" xảy ra <=> P = 0
<=> x2 = 0 ( vì mẫu ko bao giờ = 0 đc )
<=> x = 0
Vậy Pmin = 0 <=> x = 0
tim gtln cua bt A=x^2/(x^4+x^2+1)
Ta có :
\(3A=\frac{3x^2}{x^4+x^2+1}=\frac{x^4+x^2+1-x^4+2x^2-1}{x^4+x^2+1}=\frac{\left(x^4+x^2+1\right)-\left(x^2-1\right)^2}{x^4+x^2+1}\)
\(=1-\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\le1\)
\(\Leftrightarrow3A\le1\Rightarrow A\le\frac{1}{3}\)có GTLN là \(\frac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\pm1\)
Tim GTLN cua:
A= 2/ (x+√ x+1)
\(A=\dfrac{2}{x+\sqrt{x}+1}\)
Ta có : \(x+\sqrt{x}+1=\left(x+2.\dfrac{1}{2}.\sqrt{x}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2\ge\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}\le\dfrac{2}{\dfrac{3}{4}}=\dfrac{2.4}{3}=\dfrac{8}{3}\)
Vậy GTLN của A là \(\dfrac{8}{3}\). Dấu "=" xảy ra khi và chỉ khi \(x=-\dfrac{1}{2}\)
Mà x > 0, nên trường hợp này ta không chấp nhận .
Ta có : Vì x > 0 , \(\Rightarrow x+\sqrt{x}+1\ge1\)
Vậy giá trị nhỏ nhất là \(1\). Dấu "=" xảy ra khi và chỉ khi \(x=1.\)