Cho phân số a bằng \(\frac{n+1}{n-3}\text{ }\left(n\in Z;\text{ }n\ne3\right)\)
Tìm n để a là phân số tối giản.
\(\text{( \frac{67}{11} + \frac{2}{33} − \frac{15}{117} ) . ( \frac{1}{3} − \frac{1}{4}− \frac{1}{12})}\)Cho biểu thức A = \(\frac{5}{n-1};\left(n\in z\right)\)
Tìm điều kiện của n để A là phân số
Tìm tất cả giá trị nguyên của n để A là số nguyên
Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)
Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)
\(n-1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(2\) | \(0\) | \(6\) | \(-4\) |
Cho phân số \(A=\frac{n+1}{n-3}\left(n\in Z;n\ne3\right)\)
Tìm n để A là phân số tối giản
\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để A là phân số tối giản <=> \(\frac{4}{n-3}\) là phân số tối giản
Để A là phân số tối giản thì: n + 1 chia hết cho n - 3
=> n -3 + 4 chia hết cho n - 3
mà n - 3 chia hết cho n - 3
=> 4 chia hết cho n - 3 hay n - 3 thuộc Ư(4)
=> n - 3 thuộc { -1 ; 1 ; 2 ; -2 ; 4 ; - 4 }
=> n thuộc { 2 ; 4 ; 5 ; 1 ; 7 ; - 1 }
Để A là phân số tối giản => (n+1) chia hết cho(n-3)
Mà n+1= n-3+4 => n-3+4 chia hết cho n-3
mà n-3 chia hết cho n-3 => 4 chia hết cho n-3. => n-3 thuộc ước của 4.
Mà ước của 4 = {1;-1;2;-2;4;-4 } => n-3 thuộc {1;-1;2;-2;4;-4 }
=> n thuộc { 2;4;5;1;7;-1}
Cho phân số A = \(\frac{n+1}{n-3}\)\(\left(n\in Z\right)\). Tìm n sao cho
a) A có giá trị nguyên
b) A là phân số tối giản
Bài 1:Cho A=\(\frac{4}{\left(n-2\right).\left(n+1\right)}\),\(n\in Z\)
a)Với \(n\in Z\)nào thì A không tồn tại
b)Viết tập hợp M các số nguyên n để A tồn tại
c) Tìm phân số A, biết n=2, n=0, n=11
d)Tìm \(n\in Z\) để A=\(\frac{1}{7}\)
a) 2 hoặc -1
b)M={-3;-2;0;1;3;4;5}
Cho phân số A=\(\frac{6}{\left(n+2\right)\left(n-1\right)},n\in Z\)
a) Với giá trị nào của số nguyên n thì phân số A ko tồn tại
b) Viết tập hợp các số nguyên n để phân số A tồn tại
c) Tìm phân số A biết n=-7;n=5;n=0;n=1
Câu 1:Chứng tỏ rằng phần số
\(\frac{2n+1}{3n+2}\)là phân số tối giản
Câu 2:
Cho \(A=\frac{n+2}{n-5}\left(n\in Z;n\ne5\right)\)Tìm x để \(A\in Z\)
1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)và\(3n+2\)là nguyên tố cùng nhau
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)
câu 1 :
gọi d = ƯCLN ( 2n + 1; 3n +2 )
=> 2n + 1 chia hết cho d => 3 ( 2n +1 ) chia hết cho d
3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d
ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4 - [ 6n + 3 ] chia hết cho d
=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau
=> \(\frac{2n+1}{3n+2}\) là phân số tối giản
2) \(A=\frac{n+2}{n-5}\left(n\in Z;n\ne5\right)\)
\(\Rightarrow\left(n+2\right)⋮\left(n-5\right)\)
\(\Rightarrow\left(n+2\right)-\left(n-5\right)⋮\left(n-5\right)\)
\(\Rightarrow7⋮n-5\Rightarrow n-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta xét bảng:
\(n-5\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(n\) | \(4\) | \(6\) | \(-2\) | \(12\) |
Vậy\(n\in\left\{-2;4;6;12\right\}\)
\(\text{Chứng minh rằng : }\)\(\forall n\in Z\left(n\ne0,n\ne-1\right)\)\(\text{thì }\)\(Q=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}\)
\(\text{Không phải là số nguyên}\)
\(Q=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(Q=1-\frac{1}{n+1}=\frac{n}{n+1}\)
gọi d là UCLN của n,(n+1) ta có:
\(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow d=1}\)
=> Q là p/s tối giãn mà n khác 0 => Q ko thuộc Z
Cho phân số: \(B=\frac{n+1}{n-2}\left(n\in Z\right)\)Tìm điều kiện của số nguyên n để D là phân số
để B là p/số thì n+1;n-2 thuộc Z (n-2 # 0)
=>n # 0 + 2
=> n # 2 thù B là p/số
vậy..
Cho phân số \(A=\dfrac{n+1}{n-3},\left(n\in\mathbb{Z};n\ne3\right)\)
Tìm n để A là phân số tối giản ?
\(A=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}=1+\dfrac{4}{n-3}\)
Để A là p/s tối giản thì \(\dfrac{4}{n-3}\) phải là p/s tối giản
\(=>n-3\) là số lẻ \(\Leftrightarrow n\) là số chẵn
Vậy \(n=2k\left(k\in Z\right)\)