Xác định phương trình của Parabol (P) y = ax\(^2\)+ bx + c biết rằng (P) có đỉnh I ( 1 ; 4 )
câu 1: xác định hàm số bậc hai y = \(2x^2\)+ bx +c , biết rằng đồ thị của nó có đỉnh là I ( -1 ; 0)
câu 2 : xác định phương trình (P) y=\(ax^2\)+ bx+c đi qua ba điểm A ( 0:-1) B ( 1:-1) C ( -1:1)?
Câu 1:
Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)
Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix}
-1=a.0^2+b.0+c\\
-1=a.1^2+b.1+c\\
1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
c=-1\\
a+b+c=-1\\
a-b+c=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)
cho hàm số y=ax^2+bx+1. Xác định hàm số biết rằng đồ thị của hàm số đó là parabol có đỉnh I(2;-3)
Xác định parabol y= ax2 + bx + c, (a#0), biết rằng đỉnh của parabol đó có tung độ bằng -25, đồng thời parabol đó cắt trục hoành tại hai điểm A(-4;0) và B(6;0).
Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có
\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)
\(\Rightarrow y=x^2-2x-24\)
Xác định Parabol (P): y = ax 2 + bx + 3 biết rằng Parabol có đỉnh I (3; -2)
A. y = x 2 − 6 x + 3
B. y = − 5 9 x 2 + 10 3 x + 3
C. y = 3 x 2 + 9 x + 3
D. y = 5 9 x 2 − 10 3 x + 3
Xác định parabol y = ax2 + bx + 2, biết rằng parabol đó: Có đỉnh là I(2; -2)
Parabol y = ax2 + bx + 2 có đỉnh I(2 ; –2), suy ra :
Từ (1) ⇒ b2 = 16.a2, thay vào (2) ta được 16a2 = 16a ⇒ a = 1 ⇒ b = –4.
Vậy parabol cần tìm là y = x2 – 4x + 2.
Xác định tọa độ của đỉnh, phương trình của trục đối xứng của parabol :
\(y=ax^2+bx+c\)
Tọa độ đỉnh \(\left(\dfrac{-b}{2a},\dfrac{-\Delta}{4a}\right)\)
Trục đối xứng \(x=\dfrac{-b}{2a}\)
Xác định parabol \(y = a{x^2} + bx + c\) , biết rằng parabol đó đi qua điểm A(8; 0) và có đỉnh là I(6; -12)
Đồ thị hàm số \(y = a{x^2} + bx + c\) đi qua điểm A(8; 0) nên:
\(a{.8^2} + b.8 + c = 0 \Leftrightarrow 64a + 8b + c = 0\)
Đồ thị hàm số \(y = a{x^2} + bx + c\) có đỉnh là I(6;-12):
\(\frac{{ - b}}{{2a}} = 6 \Leftrightarrow - b = 12a \Leftrightarrow 12a + b = 0\)
\(a{.6^2} + 6b + c = - 12 \Leftrightarrow 36a + 6b + c = - 12\)
Từ 3 phương trình trên ta có: \(a = 3;b = - 36,c = 96\)
=> Hàm số cần tìm là \(y = 3{x^2} - 36x + 96\)