Cho A =2 mũ 0 + 2 mũ 1 +.....+2 mũ 2022
Cho B =2021
Chứng tỏ A và B là 2 số tự nhiên liên tiếp
Cho a=1+2+2 mũ 2+2 mũ 3+....+2 mũ 2016
b=2 mũ 2017
Chứng tỏ rằng a và b là hai số tự nhiên liên tiếp
\(A=1+2+2^2+2^3+...+2^{1016}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2016}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{2017}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2016}\right)\)
\(A=2^{2017}-1\)
\(B=2^{2017}\)
=> A và B là hai số tự nhiên liên tiếp
A = 2^0 + 2^1 + 2^3 +...+
2^2022.B= 2^2023 .Hãy chứng tỏ A và B là hai số tự nhiên liên tiếp.
^ là mũ
\(A=1+2+2^2+2^3+...+2^{2022}\)
\(2A=2+2^2+2^3+...+2^{2023}\)
\(2A-A=\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^{2023}-1\right)\)
\(A=2^{2023}-1\)
Mà: \(2^{2023}-1\) và \(2^{2023}\)
Là hai số tự nhiên liên tiếp nên:
A và B là hai số tự nhiện liên tiếp
cho A = 2 mũ 0 + 2 mũ 2 + 2 mũ + 2 mũ 3 + .... + 2 mũ 19 và B = 2 mũ 20 . chứng minh rằng A và B là 2 số tự nhiên liên tiép
Ta có A = 1 + 2 + 22 + 23 + ... + 219
=> 2A = 2 + 22 + 23 + 24 + ... + 220
=> 2A - A = (2 + 22 + 23 + 24 + ... + 220) - (1 + 2 + 22 + 23 + ... + 219)
=> A = 220 - 1
Lại có B = 220
=> A và B là 2 số tự nhiên liên tiếp
Ta có: \(A=2^0+2^1+2^2+2^3+...+2^{19}\)
\(\Leftrightarrow2A=2^1+2^2+2^3+2^4...+2^{20}\)
\(\Leftrightarrow2A-A=\left(2^1+2^2+2^3+2^4...+2^{20}\right)-\left(2^0+2^1+2^2+2^3+...+2^{19}\right)\)
\(\Leftrightarrow A=2^{20}-1\)
Vì \(2^{20}-1\)và \(2^{20}\)là 2 STN liên tiếp
\(\Rightarrow\)\(A\)và \(B\)là 2 STN liên tiếp
TL :
Ta có A = 1 + 2 + 22 + 23 + ... + 219
=> 2A = 2 + 22 + 23 + 24 + ... + 220
=> 2A - A = (2 + 22 + 23 + 24 + ... + 220) - (1 + 2 + 22 + 23 + ... + 219)
=> A = 220 - 1
Lại có B = 220
=> A và B là 2 số tự nhiên liên tiếp
Cho A = 2 mũ 0 + 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + ...... + 2 mũ 2018 và 2 mũ 2019. Chứng minh rằng A và B là hai số tự nhiên liên tiếp
Giúp mình với! Mình đang cần gấp
Giúp mình bài này nữa với. Khó quá >^<
Học sinh lớp 6A khi chia tổ. Nếu chia 4 tổ; 5 tổ; 8 tổ đều vừa đủ. Tính số học sinh của lớp 6A. Biết rằng số h/s lớp đó có khoảng từ 35 đến 45 em.
Nhanh giúp mik với chứ chiều mình thi rồi ToT
2A=2+2^2+...+2^2019
=>A=2^2019-1
=>A và B là hai số liên tiếp
cho 4 số tự nhiên a b c và d đều khác 0 thỏa mãn đẳng thức a mũ 2 cộng b mũ 2 bằng c mũ 2 cộng b mũ 2 chứng minh rằng a + b+c+d là 1 hợp số
Cho A= 1 +2^2+2^4+2^6+...+2^2023 và B =2^2023. Chứng minh 3 nhân A và 2 nhân B là hai số tự nhiên liên tiếp. (Lưu ý: ^ là số mũ)
Sửa đề: \(A=1+2^2+2^4+...+2^{2022}\)
\(\Leftrightarrow4\cdot A=2^2+2^4+2^6+...+2^{2024}\)
=>\(4A-A=2^2+2^4+...+2^{2024}-1-2^2-...-2^{2022}\)
=>\(3A=2^{2024}-1\)
mà \(2\cdot B=2^{2024}\)
nên 3A và 2B là hai số tự nhiên liên tiếp
Cho 2 số tự nhiên a,b .chứng tỏ rằng nếu tích a.b chẵn thì bao giờ cũng tìm được 2 số tự nhiên c,d sao cho a mũ 2+b mũ 2+c mũ 2=d mũ 2
Bài 1.chứng tỏ rằng nếu căn x là một số hữu tỉ khác 0 thì X phải là một số hữu tỉ có dạng a mũ 2 phần b mũ 2 trong đó A, B là những số nguyên dương và a mũ 2 trên b mũ 2 là một phân số tối giản.
Bài 2.tìm gt nguyên x sao cho (3+√x) /(2-√x) có gt nguyên.
Bài 3. chứng tỏ rằng với số tự nhiên n lớn hơn 0 ta có
1+1/n²+1/(n+1)²=(n²+n+1)²/(n²(n+1)²)
Ta có:
\(VT=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+n^2+2n+1+n^2}{n^2\left(n+1\right)}\left(1\right)\)
\(VP=\frac{\left(n^2+n+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left[n\left(n+1\right)\right]}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left(n^2+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2n^2+2n}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+2n+1+2n^2}{n^2\left(n+1\right)^2}\left(2\right)\)
Từ (1) và (2)
=>đpcm
Vì \(\sqrt{x}\)là một số hữu tỉ
\(\Rightarrow\sqrt{x}\)có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\)là một phân số tối giản)
Vì \(\sqrt{x}\ge0\)và theo đề bài \(\frac{a}{b}\ne0\Rightarrow\frac{a}{b}\ge0\)
\(\Rightarrow a,b\)là những số nguyên dương (1)
Vì \(\sqrt{x}\)có dạng \(\frac{a}{b}\Rightarrow\left(\sqrt{x}\right)^2=\left(\frac{a}{b}\right)^2\Rightarrow x=\frac{a^2}{b^2}\)(2)
Vì \(\frac{a}{b}\)là phân số tối giản
\(\Rightarrow a,b\)là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(a,b)=1
Vì \(a^2\) có Ư(a), \(b^2\)có Ư(b)
\(\Rightarrow a^2,b^2\) là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(\(a^2,b^2\))=1
\(\Rightarrow\frac{a^2}{b^2}\) là phân số tối giản (3)
Từ (1), (2) và (3)
=>đpcm
cho A = 2 mũ 0 + 2 mũ 1 + 2 mũ 2 +....+ 2 mũ 2018
a) so sánh A với 2 mũ 2019
b) tìm số tự nhiên x biết A+1 = 2 mũ x +1
c) tìm số tự nhiên x biết A+1 = 2.4 mũ x
d) chứng minh rằng A chia hết cho 7
e) tính số dư khi chia A cho 3 và khi chia A cho 15
a)xét 2A =2+2^2+2^3+.....+2^2019
-A=1+2+2^2+...+2^2018
A=(2^2019)-1 <2^2019
b)theo câu a ta có A+1=2^2019-1+1=2^2019=2^(x+1)
2019=x+1 =>x=2018
c)theo câu b ta có A+1=2^2019=2.4^x=2^(1+2x)
=>2019=1+2x
tự làm nốt