Tìm max : |3x−1|−(3x−1)^2
Tìm min
F=3x^2 +x -2
G= 4x^2+2x-1
H=5x^2-x+1
Tìm max
A= -x^2 -6x+3
B=-x^2+8x-1
C= -x^2-3X+4
D= -2x^2+3x-1
E= -3x^2 – x +2
F= -5x^2 -4x +3
G= -3x^2 – 5x+1
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
Tìm min
$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$
$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$
$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$
$\Leftrightarrow x=\frac{1}{10}$
a) Tìm min (GTNN) |x-5|+|x+6| b) Tìm max (GTLN) |3x-1|-(3x-1)2
a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11
Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5
Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5
b ) Vì (3x - 1)2 ≥ 0
Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3
=> max |3x - 1| - (3x - 1)2 = 0 tại x = 1/3
a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11
Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5
Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5
b ) Vì (3x - 1)2 ≥ 0
Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3
=> max |3x - 1| - (3x - 1)2 = 0 tại x = 1/3
a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11
Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5
Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5
b ) Vì (3x - 1)2 ≥ 0
Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3
=> max |3x - 1| - (3x - 1)2 = 0 tại x = 1/3
1) Tìm MAX A = 3 - 4x2 - 4x ; \(B=\frac{1}{x^2+6x+11}\)
2) Tìm Min
a,3x^2 - 3x + 1
b,|3x - 3| + |3x - 5|
1) A = 3 - 4x2 - 4x = - (4x2 + 4x +1) + 4 = - (2x+1)2 + 4
Vì - (2x+1)2 \(\le\)0 nên A = - (2x+1)2 + 4 \(\le\) 4 vậy maxA = 4 khi 2x+1 = 0 => x = -1/2
b) ta có x2 + 6x + 11 = x2 + 2.3x + 9 + 2 = (x+3)2 + 2 \(\ge\) 0 + 4 = 4
=> \(B=\frac{1}{x^2+6x+11}\le\frac{1}{4}\) vậy maxB = 1/4 khi x = -3
2) a) 3x2 - 3x + 1 = 3.(x2 - x) + 1 = 3.(x2 - 2.x\(\frac{1}{2}\) + \(\frac{1}{4}\)) + \(\frac{1}{4}\) = 3.(x - \(\frac{1}{2}\) )2 + \(\frac{1}{4}\) \(\ge\)0 + \(\frac{1}{4}\)= \(\frac{1}{4}\)
vậy min(3x2 - 3x + 1) = 1/4 khi x = 1/2
b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a - b|. dấu = khi a.b < 0
ta có: |3x - 3| + |3x - 5| \(\ge\) |3x - 3 - (3x - 5)| = |2| = 2
vậy min = 2 khi (3x - 3)(3x - 5) < 0 hay 1< x < 5/3
Tìm max
D= -2x^2+3x-1
\(D=-2x^2+3x-1\)
\(\Rightarrow D=-2\left(x^2-\dfrac{3}{2}x\right)-1\)
\(\Rightarrow D=-2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}\right)-1\)
\(\Rightarrow D=-2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{4}\right)-1+\dfrac{9}{2}\)
\(\Rightarrow D=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{2}\le-\dfrac{7}{2}\left(-2\left(x-\dfrac{3}{2}\right)^2\le0,\forall x\right)\)
\(\Rightarrow Max\left(D\right)=-\dfrac{7}{2}\left(tạix=\dfrac{3}{2}\right)\)
D= -2x^2 +2x+x-1
= 2x(-x+1)+(x-1)
= 2x(-x+1)- (-x+1)
= (-x+1)(2x-1)
=(1-x)(2x-1)
có 1-x< hoặc = 0
2x-1< hặc = 0
=> (1-x)(2x-1) < hoặc = 0
Dấu = xảy ra khi
TH1 : 1-x = 0
x=1
TH2 : 2x-1 = 0
x=1/2
Tìm max
G= -3x^2 – 5x+1
\(G=-3x^2-5x+1\\ =-3\left(x^2+2.\dfrac{5}{6}x+\dfrac{25}{36}\right)+\dfrac{37}{12}\\ =\dfrac{37}{12}-3\left(x+\dfrac{5}{6}\right)^2\\ Vì:\left(x+\dfrac{5}{6}\right)^2\ge0\forall x\in R\\ Vậy:G_{max}=\dfrac{37}{12}.khi.x=-\dfrac{5}{6}\)
Cho 3x+y=1
a)Tìm min M=3x2+y2
b)Tìm max N=xy
3x+y=1
y^2=1-6x+9x^2
a) M=12(x^2-2.1/4x+1/16)+1-12/16
GTNN=1-3/4=1/4 khi x=1/4=>y=1/4
b) N=xy=x(1-3x)=-3x^2+x=-3(x^2-2.1/6x+1/36)+3/36
GTLN =1/12 khi x=1/6 ;y=1/2
1/ 3x2 + 6x - 11
2/ \(\frac{3x^2+2x+7}{3x^2+2x+1}\)
Tìm Max hoặc Min
1/
\(A=3x^2+6x-11\)\(=3\left(x^2+2x-\frac{11}{3}\right)\)\(=3\left[\left(x^2+2x+1\right)-\frac{14}{3}\right]\)\(=3\left(x+1\right)^2-14\ge-14\)
VẬY \(minA=-14\)khi \(x=-1\)
2/
\(B=\frac{3x^2+2x+7}{3x^2+2x+1}=1+\frac{6}{3x^2+2x+1}\)
Biểu thức \(\frac{6}{3x^2+2x+1}\)đạt GTLN khi \(3x^2+2x+1\)nhỏ nhất
Mà \(3x^2+2x+1\ge1\)nên GTNN của \(3x^2+2x+1\)là \(1\)
Ta có : \(maxB=1+6=7\) khi \(x=0\)
TK mk nka !!!!!
\(\Rightarrow B_{max}=1+\frac{6}{\frac{4}{3}}=\frac{11}{2}\Leftrightarrow x=-\frac{1}{3}\)
Ta có : 3x2 + 6x - 11
= 3x2 + 3.x.3 - 9 - 2
= (3x2 - 3)2
Mà (3x - 3)2 \(\le0\forall x\in R\)
Nên 3x2 + 6x - 11 min = 0 khi x = 1
tìm MIN;MAX của A=[2x^2+3x+12]/[x^2-x+1]
Tìm min,max của A=-|-5x-12|.|3x+2|-5x+1
phan duy em mời giải giải ko dc tau cho ăn phân
tìm Min,Max của
B=3x/1-x^2 * x-1/x+1