C = \(\frac{3-2x}{x+2}\) \(\in\) Z
D=\(\frac{4x^2-7x}{x-1}\)
tìm A, B, C, D
a, \(\frac{64x^3+1}{16x^2-2}=\frac{A}{4x-1}\)
b, \(\frac{4x^2+3x-7}{B}=\frac{4x+7}{2x-3}\)
c, \(\frac{C}{3x^2-7x+4}=\frac{3-2x}{x-\frac{4}{3}}\)
d, \(\frac{2x-y-1}{4x-2y}=\frac{4x^2-2x-y^2-y}{D}\)
Cho A = \(\left(\frac{2x-3}{4x^2-12x+5}+\frac{3x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-2x^2}{4x^2+4x-3}+1\)
a, Rút gọn .
b, Tìm \(x\in Z\)để \(A\in Z\).
c, Tìm x để \(A\ge0\)
a. ĐKXĐ : \(x\ne\frac{1}{2};\frac{5}{2};4;-\frac{3}{2};\frac{1\pm\sqrt{43}}{2}\)
\(A=\left(\frac{2x-3}{4x^2-12x+5}+\frac{3x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-2x^2}{4x^2+4x-3}+\)
\(=\left(\frac{2x-3}{\left(2x-1\right)\left(2x-5\right)}-\frac{3x-8}{\left(2x-5\right)\left(x-4\right)}-\frac{3}{2x-1}\right).\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)
\(=\frac{\left(2x-3\right)\left(x-4\right)-\left(3x-8\right)\left(2x-1\right)-3\left(2x-5\right)\left(x-4\right)}{\left(2x-1\right)\left(2x-5\right)\left(x-4\right)}.\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)
\(=\frac{-10x^2+47x-56}{\left(2x-5\right)\left(x-4\right)}.\frac{2x+3}{-2x^2+2x+21}+1\) số to wa
Rút gọn các phân thức:
a)\(\frac{x^4-4x^2+3}{x^4+6x^2-7}\)
b)\(\frac{x^4+x^3-x-1}{x^4+x^3+2x^2+x+1}\)
c)\(\frac{x^3+3x^2-4}{x^3-3x+2}\)
d)\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)
e)\(\frac{\left(x-y\right)^3-3xy\left(x+y\right)+y^3}{x-6y}\)
f)\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
Giải các phương trình sau:
a)\(\sqrt{1-2x}+\sqrt{1+2x}=2-x^2\)
b)\(\sqrt{2x-\frac{3}{x}}+\sqrt{\frac{6}{x}-2x}=1+\frac{3}{2x}\)
c)\(\sqrt[3]{x+1}=x^3-15x^2+75x-131\)
d)\(x^2-x-2\sqrt{1+16x}=2\)
e)\(7x^2+7x=\sqrt{\frac{4x+9}{28}}\)với x>0
Thực hiện phép tính:
a. 2x(x + y) - y(y + 2x)
b. \(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}\)
c.\(\frac{x^3-4x^2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{x-1}\)
ai giúp minh với!! tối mai mình phải trả đề cương rồi!!
a. 2x(x + y) - y(y + 2x) = 2x2 + 2xy - y2 - 2xy = 2x2 - y2
b.\(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)
Phần c nản quá.
Thực hiện phép tính:
a. 2x(x + y) - y(y + 2x)
b. \(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}\)
c.\(\frac{x^3-4x^2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{x-1}\)
ai giúp minh với!! tối mai mình phải trả đề cương rồi!!
a) 2x(x + y) - y(y + 2x)
= 2x2 + 2xy - y2 - 2xy
= 2x2 - y2
b) \(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)
c) \(\frac{x^3-4x^2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{x-1}\)
= \(\frac{x^3-4x^2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}+\frac{x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}\)
= \(\frac{x^3-4x^2+2x-2+x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{x^3-3x^2+3x-1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{\left(x-1\right)^3}{\left(x^2+x+1\right)\left(x-1\right)}\)
\(=\frac{\left(x-1\right)^2}{x^2+x+1}\)
cho biểu thức P= ( \(\frac{2x-3}{4x^2-12x+5}+\frac{2x-8}{13x-2x^2-20}-\frac{3}{2x-1}\))\(:\frac{21+2x-8x^2}{4x^2+4x-3}+1\)
a/ rút gọn
b/ tìm giá trị của P khi giá trị tuyệt đối của x =1/2
c/ tìm giá trị nguyên của xđể P \(\in\)Z
d/ tìm x để P >0
C1: giải các phương trình sau:
a) 4x +5\(=\)1
b) -5x +2 \(=\)14
c) 6x -3 \(=\)8x +9
d) 7x -5 \(=\)13 -5x
e) 2-3x \(=\) 5x +10
f ) 13 - 7x \(=\) 4x -20
C2: giải các phương trình sau:
a) 2(7x +10) + 5 =3(2x -3) -9x
b) (x+1)(2x-3)=(2x-1)(x+5)
c) 2x + x(x+1)(x-1)= (x+1)(x2 - x +1)
d) (x-1)3 -x(x+1)2 = 5x(2 -x)-11(x+2)
C3: giải các phương trình sau:
a) \(\frac{2\left(x-3\right)}{4}-\frac{1}{2}=\frac{6x+9}{3}-2\)
b) \(\frac{2\left(3x+1\right)+1}{4}-5\frac{2\left(3x-1\right)}{5}-\frac{3x+2}{10}\)
c) \(\frac{x}{3}+\frac{x-2}{4}=0,5x-2,5\)
d) \(\frac{2x-4}{3}-2x=\frac{6x+3}{5}+\frac{1}{15}\)
Quy đồng mẫu thức các phân thức
a) \(\frac{3}{x^2-2x}\) ; \(\frac{4}{3x-6}\) ; \(\frac{4x+1}{x^2-x-2}\)
b) \(\frac{2m}{m^2-n^2}\) ; \(\frac{2n^2}{m^3-n^3}\)
c) \(\frac{x-z}{x^2+xy+xz+yz}\); \(\frac{x+z}{x^2+xy-xz-yz}\)
d) \(\frac{x}{2x^2+7x-15}\); \(\frac{x+2}{x^2+3x-10}\); \(\frac{1}{x+5}\)
e) \(\frac{x+1}{x-x^2}\); \(\frac{x+2}{2-4x+2x^2}\)