2.Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC. Tính chu vi tam giác ABC biết AC=20 cm, AH=12 cm, BH=5 cm.
Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC tại H. Biết rằng AC = 20 cm, AH = 12 cm, BH = 5 cm. Tính chu vi của tam giác ABC.
AB = 13 cm, BC = 21 cm.
Từ đó, chu vi của tam giác ABC là 54 cm.
Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC. Tính chu vi tam giác ABC biết AC= 20cm, AH = 12 cm và BH = 5cm
∆AHB có ∠(AHB) =90°
Theo định lý pitago, ta có:
AB2=AH2+HB2
= 122+52=169
Vậy AB = 13 cm
∆AHC có ∠(AHC) =90o
Theo định lý pitago, ta có:
AC2=AH2+HC2
HC2=AC2-AH2=202-122=400-144=256
Vậy HC = 16cm
Ta có: BC = BH + HC = 5 +16 = 21cm
Chu vi tam giác ABC là: AB + AC + BC = 13 + 20 + 21 = 54cm
Cho Tam giác nhọn ABC . Kẻ AH vuông góc với BC .Tính chu vi tam giác ABC .Biết AC = 7,5 cm, AH = 4,5 cm, BH = 1,875 cm
Xét tam giác AHC vuông tại H có:
AC2 = HC2 + AH2 (định lý Pytago)
Thay số: 7.52 = HC2 + 4.52
<=> HC2 = 7.52 - 4.52
<=> HC2 = 56,25 - 20,25 = 36 = 6 (cm)
Ta có: BC = BH + HC
Thay số: BC = 1,875 + 6 = 7,875 (cm)
Xét tam giác AHB vuông tại H có:
AB2 = BH2 + AH2 (định lý Pytago)
Thay số: AB2 = 1,8752 + 4,5 2
<=> AB2 = \(\dfrac{225}{64}\) + \(\dfrac{81}{4}\) = \(\dfrac{1521}{64}\)
<=> AB = 4,875 (cm)
Chu vi tam giác ABC là: AB + AC + BC = 4,875 + 7,5 + 7,875
= 20,25 (cm)
Xét \(\Delta ABH\) có AH \(\perp\) BH , theo định lí Pytago ta có :
AB2 = AH2 + BH2
=>AB2 = 4.52 + 1.8752
=>AB2 = 23.765625.......
=>AB = 4.875 (cm)
Có AH \(\perp\) BC, theo định lí Pytago ta có :
HC2 = AH2 + AC2
=> HC2 = 76.5
=> HC = 8.746427842 \(\approx\) 8.8 (cm)
=> BC = 10.675 (cm)
Chu vi \(\Delta ABC\) là : AC + BC + AB = 23.05 (cm)
Cho ABC nhọn. kẻ AH vuông góc với BC tại H. Biết rằng AC = 20cm, AH bằng 12 cm, BH = 5 cm. Tính chu vi của tam giác ABC. Tam giác nào là tam giác vuông trong.
(tự vẽ hinh)
* Do AH vuông góc vs BC(gt)
=> Tam giác AHC và tam giác AHC là tam giác vuông tại H
* Tam giác vuông AHC có:
AC^2=AH^2+HC^2(ĐL py-ta-go)
20^2=12^2+HC^2
400=144+HC^2
HC^2=400-144
HC^2=256
HC^2=16^2(vì HC>0)
=>HC=16 cm
* Tam giác AHB có:
AB^2=AH^2+HB^2(DL py-ta-go)
AB^2=12^2+5^2
AB^2=144+25
AB^2=169
AB^2=13^2(vì AB>0)
=>AB=13 cm
*Ta có:
BH+HC=BC(AH vuống góc với BC tại H)
5+16=BC
=>BC=21cm
*Chu vi tam giác ABC:
AB+BC+AC=13+21+20=53cm
* Tam giác AHB và tam giác AHC là tam giác vuông trong vì:
AH vuông góc với BC tại H
AH cát BC tại hH tạo thành 2 tam giác vuông trong tam giác ABC
1.Cho tam giác ABC nhọn, vẽ đường cao AH. Tính chu vu của tam giác ABC, biết AC = 13cm, AH = 12 cm, BH = 9cm
2. Cho tam giác ABC, góc A = 90 độ. BIết AB + AC = 49 cm; AB - AC = 7cm. Tínnh BC
3. Cho tam giác ABC, AB = AC =17 cm. Kẻ BD vuông góc với AC. Tính BC biết BD = 15cm
Cho tam giác ABC có góc B,C nhọn kẻ AH vuông góc với BC . Biết AB =20 cm , BH = 16 cm , HC =5 cm . Tính AH ,AC
Áp dụng định lí Pythagoras vào △ABH, ta có :
AB2 = AH2 + BH2
\(\Rightarrow\)202 = AH2 + 162
\(\Rightarrow\)AH2= 144
\(\Rightarrow\)AH = 12
Áp dụng định lí Pythagoras vào △AHC, ta có :
AC2 = AH2 + HC2
\(\Rightarrow\)AC2 = 122 + 52
\(\Rightarrow\)AC2 = 169
\(\Rightarrow\)AC = 13
Vậy AH = 12 cm
AC = 13 cm
Cho tam giác ABC. Kẻ AH vuông BC ( H nằm giữa B và C). Biết AC = 20 cm, AH = 12 cm, BH = 5 cm.
a) Tính chu vi tam giác ABC
b) Tính diện tích tam giác ABC
c) Tam giác ABC có là tam giác vuông không
Hình bn tự vẽ nhá :)
a, +, \(\Delta\) vuông AHC có :
AC2 = AH2 + HC2 ( Định lí py - ta - go )
202 cm = 122 cm + HC2
400 cm = 144 cm + HC2
=> HC2 = 256
HC = 16 cm
Ta có : BH + HC = BC
5 + 16 = BC
=> BC = 21 cm
+, \(\Delta\) vuông AHB :
AB2 = AH2 + BH2
AB2 = 122 cm + 52 cm
AB2 = 144 cm + 25 cm
AB2 = 169
AB = 13 cm
=> Chu vi \(\Delta\) ABC : 20 + 13 + 21 = 54
b, Diện tích \(\Delta\) ABC :
\(\frac{1}{2}.21.12=126\) ( cm2 )
Cho tam giác nhọn ABC, Kẻ AH vuông góc với BC. Tính chu vi tam giác ABC biết AC = 20, AH = 12cm, BH = 5cm ?
Xét \(\Delta\)AHC vuông tại H:
=> AC2 = HA2 + HC2
HC2 = AC2 - HA2
HC2 = 202 - 122 = 256
HC = \(\sqrt{256}\) = 16 (cm)
BC = BH + HC
BC = 5 + 16 = 21 (cm)
Xét \(\Delta\)AHB vuông tại H
=> AB2 = HA2 + HB2
AB2 = 122 + 52
AB2 = 144 + 25 = 169
AB = \(\sqrt{169}\) = 13 (cm)
Chu vi của \(\Delta\)ABC là:
AC + CB + BA = 20 + 21 + 13
= 54 (cm)
Vậy chu vi của \(\Delta\)ABC là 54 cm.
Xét ΔΔAHC vuông tại H:
=> AC2 = HA2 + HC2
HC2 = AC2 - HA2
HC2 = 202 - 122 = 256
HC = √256256 = 16 (cm)
BC = BH + HC
BC = 5 + 16 = 21 (cm)
Xét ΔΔAHB vuông tại H
=> AB2 = HA2 + HB2
AB2 = 122 + 52
AB2 = 144 + 25 = 169
AB = √169169 = 13 (cm)
Chu vi của ΔΔABC là:
AC + CB + BA = 20 + 21 + 13
= 54 (cm)
Vậy chu vi của ΔΔABC là 54 cm.
Cho tam giác ABC nhọn . Kẻ AH vuông góc với BC ( H thuộc BC ) .Tính chu vi tam giác ABC biết AB = 10 cm , AH =8CM VÀ HC = 15 cm
Cho tam giác ABC nhọn . Kẻ AH vuông góc với BC ( H thuộc BC ) .Tính chu vi tam giác ABC biết AB = 10 cm , AH =8CM VÀ HC = 15 cm