tim min(x+y)^2+(x+1)^2+(y-2)^2
tim MIN A = x^2+y^2-xy-x+y+1
2.A = 2x2 + 2y2 - 2xy - 2x + 2y + 2 = (x2 - 2xy + y2 ) + (x2 - 2x + 1) + (y2 + 2y + 1) = (x - y)2 + (x - 1)2 + (y +1)2
= (x - y)2 + (1 - x)2 + (y +1)2
Ap dụng bđt Bu nhi a: (ax + by + cz)2 \(\le\) (a2 + b2 + c2)(x2 + y2 + z2). dấu = xảy ra khi a/x = b/y = c/z
ta có [(x - y).1 + (1- x).1 + (y + 1).1]2 \(\le\) [(x - y)2 + (1 - x)2 + (y +1)2].(12 + 12 + 12)
=> 4 \(\le\) 3. 2.A => A \(\ge\)2/3 => Min A = 2/3
dấu = xảy ra khi x - y = 1- x = y + 1 => x = 1/3; y = -1/3
1)Tim MAX cua A= (6x^2-2x+1)/ x^2
2)tim MIN va MAX C= (3-4x)/(X^2+1)
3) Tim MIN va MAX P = x^2+y^2
biet giua x va y co moi quan he nhu sau : 5x^2+8xy+5y^2=36
4)tim MAX Q = -x^2-y^2+xy+2x+2y
cho x+y >1 va x >0. tim min A = (8x^2+y)/4x + y^2
Cho x,y la ca so duong tm x+y nho hon hoặc bang 1 tim Min A = 1/x^2+y^2 + 2/xy +4xy
cho 0 <= x,y <=1 va x+y=3xy. tim min, max cua P= x^2 + y^2 -4xy
x,y>0; x2 +y2 =1 tim A min= 1/x+1/y
Nếu mà bạn giải Violympic thì có thể làm theo cách này :
Vì vai trò của x,y trong phép tính là như nhau
=> Amin <=> x=y
<=> x2=y2=0,5
<=> x=y=\(\sqrt{0.5}\)
=> Amin= \(2\sqrt{2}\)
P/s: đây là cách mình hay làm nhưng chỉ áp dụng được trên Violympic thoy
cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim min A=x^3/(x^2+xy+y^2)+y^3/(y^2+yz+z^2)+z^3/(z^2+zx+x^2)
cho x,y thoa man: x^2+y^2= x+y .tim MIN ,MAX cua B=x-y
Bạn kham khảo tại link:
tìm Min ( x^2 + y^2 ) / xy đk x>= 2y; x,y dương? | Yahoo Hỏi & Đáp
Tìm Min:
\(x=x^2+y^2-y\)
\(\Rightarrow B=\left(x^2+y^2-y\right)-y=x^2+\left(y^2-2y+1\right)-1=x^2+\left(y-1\right)^2-1\ge-1\)
Tìm Max:
\(y=x^2+y^2-x\)
\(\Rightarrow B=x-\left(x^2+y^2-x\right)=-y^2-\left(x^2-2x+1\right)+1=-y^2-\left(x-1\right)^2+1\le1\)
cho x,y>=0 và x+y =1. tim max; min của x2+y2