Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Ngọc Thủy Tiên
Xem chi tiết

TH1: x<2019

=>x-2019<0; x-2020<0; x-2021<0; x-2022<0

=>M=-x+2019-x+2020-x+2021-x+2022=-4x+8082

Vì hàm số M=-4x+8082 là hàm số nghịch biến trên R

nên M nhỏ nhất khi x lớn nhất

Khi x<2019 thì x không có giá trị lớn nhất

=>M không có giá trị nhỏ nhất

TH2: 2019<=x<2020

=>x-2019>=0; x-2020<0; x-2021<0; x-2022<0

=>M=x-2019-x+2020-x+2021-x+2022=-2x+4034

Vì hàm số M=-2x+4034 là hàm số nghịch biến trên R

nên M nhỏ nhất khi x lớn nhất

Khi 2019<=x<2020 thì x không có giá trị lớn nhất

=>M không có giá trị nhỏ nhất

TH3: 2020<=x<2021

=>x-2019>0; x-2020>=0; x-2021<0; x-2022<0

=>M=x-2019+x-2020+2021-x+2022-x=4(1)

TH4: 2021<=x<2022

=>x-2019>0; x-2020>0; x-2021>=0; x-2022<0

=>M=x-2019+x-2020+x-2021+2022-x=2x-4038

Vì hàm số M=2x-4038 là hàm số đồng biến trên R

nên M nhỏ nhất khi x nhỏ nhất

Với 2021<=x<2022 thì \(x_{\min}=2021\)

=>\(M_{\min}=2\cdot2021-4038=4042-4038=4\) (2)

TH5: x>=2022

=>x-2019>0; x-2020>0; x-2021>=0; x-2022>=0

=>M=x-2019+x-2020+x-2021+x-2022=4x-8082

Vì hàm số M=4x-8082 là hàm số đồng biến trên R

nên M nhỏ nhất khi x nhỏ nhất

Khi x>=2022 thì \(x_{\min}=2022\)

=>\(M_{\min}=4\cdot2022-8082=8088-8082=6\) (3)

Từ (1),(2),(3) suy ra \(M_{\min}=4\) khi 2020<=x<=2022

Vũ Văn Tuần
Xem chi tiết
Akai Haruma
6 tháng 1 2023 lúc 19:58

Lời giải:

Sử dụng BĐT sau:

Cho $a,b$ thực. Khi đó $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$. Áp dụng vào bài toán:

$|x-2018|+|x-2022|=|x-2018|+|2022-x|\geq |x-2018+2022-x|=4$

$|x-2020|\geq 0$ (theo tính chất trị tuyệt đối)

$\Rightarrow A\geq 4+0=4$

Vậy GTNN của $A$ là $4$. Giá trị này đạt được khi $(x-2018)(2022-x)\geq 0$ và $x-2020=0$

Hay khi $x=2020$

Akai Haruma
28 tháng 1 2023 lúc 11:39

@Vũ Văn Tuần:

Để biết vì sao $|a|+|b|\geq |a+b|$ đạt dấu "=" khi $ab\geq 0$ thì bạn đi chứng minh BĐT này thôi.

Xét các TH sau:

TH1: Ít nhất 1 trong 2 số bằng 0. Không mất tính tổng quát giả sử $a=0$. Khi đó: $|a|+|b|=|b|=|b+0|=|a+b|$

TH2: $a,b$ đều khác 0. Xét các TH nhỏ hơn:

TH2.1: $a,b$ cùng dương kéo theo $a+b$ dương. Khi đó:
$|a|=a; |b|=b; |a+b|=a+b$

$\Rightarrow |a|+|b|=|a+b|$

TH2.2: $a,b$ cùng âm thì kéo theo $a+b<0$ Khi đó:
$|a|=-a; |b|=-b; |a+b|=-(a+b)$
$\Rightarrow |a|+|b|=-a+(-b)=-(a+b)=|a+b|$

TH2.3: $a,b$ khác dấu. Không mất tính tổng quát giả sử $a$ dương $b$ âm.

$\Rightarrow |a|=a; |b|=-b$

Nếu $a+b\geq 0$ thì $|a+b|=a+b$

$\Rightarrow |a|+|b|-|a+b|=a+(-b)-(a+b)=-2b>0$ do $b<0$

$\Rightarrow |a|+|b|> |a+b|$

Nếu $a+b<0$ thì $|a+b|=-(a+b)$

$\Rightarrow |a|+|b|-|a+b|=a+(-b)--(a+b)=a+(-b)+a+b=2a> 0$ do $a>0$

$\Rightarrow |a|+|b|> |a+b|$ 

Từ các TH đã xét ta suy ra $|a|+|b|\geq |a+b|$

Dấu "=" xảy ra khi $a,b$ cùng dương, $a,b$ cùng âm hoặc ít nhất 1 trong 2 số $a,b$ bằng $0$

Tức là $ab\geq 0$

Ngân Thanh
Xem chi tiết
Vũ Thị Nhàn
Xem chi tiết
Akai Haruma
29 tháng 12 2023 lúc 22:48

Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-2020|+|x-2024|=|x-2020|+|2024-x|\geq |x-2020+2024-x|=4$

$|x-2022|\geq 0$ (theo tính chất trị tuyệt đối)

$\Rightarrow |x-2020|+|x-2024|+|x-2022|\geq 4+0=4$

$\Rightarrow P\geq 4$

Vậy $P_{\min}=4$. Giá trị này đạt được khi $(x-2020)(2024-x)\geq 0$ và $x-2022=0$

Hay $x=2022$

NGUYỄN ĐỨC DUY
Xem chi tiết
Linh Nguyễn Phương
Xem chi tiết
Xyz OLM
27 tháng 8 2020 lúc 10:00

Ta có \(\left(x+1\right)^{2022}\ge0\forall x\Rightarrow A=2020-\left(x+1\right)^{2022}\le2020\forall x\)

Dấu "=" xảy ra <=> x + 1 = 0

=> x = -1

Vậy GTLN của A là 2020 khi x = -1

b) Để C đạt GTLN 

=> \(\frac{5}{\left(x+3\right)^2}\)lớn nhất

=> (x - 3)2 nhỏ nhất 

=> (x - 3)2 = 1

=> \(\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

Nếu x = 4  => C = 6

Vậy GTLN của C là 6 khi x = 4 hoặc x = 2

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
27 tháng 8 2020 lúc 10:08

A = 2020 - ( x + 1 )2022

-( x + 1 )2022 ≤ 0 ∀ x => 2020 - ( x + 1 )2 ≤ 2020 

Đẳng thức xảy ra <=> x + 1 = 0 => x = -1

=> MaxA = 2020 <=> x =  -1

C = \(\frac{5}{\left(x-3\right)^2+1\left(^∗\right)}\)

Để C đạt GTLN => (*) = ( x - 3 )2 + 1 đạt GTNN

( x - 3 )2 ≥ 0 ∀ x => ( x - 3 )2 + 1 ≥ 1 

=> Min(*) = 1 <=> x - 3 = 0 => x = 3

=> MaxC = 5 <=> x = 3

Khách vãng lai đã xóa
nguyen thi thu huong
Xem chi tiết
Edogawa Conan
11 tháng 7 2019 lúc 9:41

Ta có: M = |x - 2018| + |x - 2019| + 2020

       M = |x - 2018| + |2019 - x| + 2020 \(\ge\)|x - 2018  + 2019 - x| + 2020 = |1| + 2020 = 2021

Dấu "=" xảy ra khi: x - 2018 + x - 2019 = 0

      <=> 2x - 4037 = 0

      <=> 2x = 4037

     <=> x = 2018,5

Vậy Min của M = 2021 tại x = 2018,5

Edogawa Conan
11 tháng 7 2019 lúc 10:05

Sửa lại một đoạn:

Dấu "=" xảy ra khi : (x - 2018)(2019 - x) = 0

      <=> 2018 \(\le\)\(\le\)2019

Nguyễn Gia Kiệt
Xem chi tiết
Trọng Nguyễn
Xem chi tiết
ILoveMath
11 tháng 11 2021 lúc 14:18

A