M= /x-2020/ + /x-2022/
Tìm gtnn của x ạ .
Tìm GTNN: M = |x-2019| + |x-2020| + |x-2021| + |x-2022| cíu
TH1: x<2019
=>x-2019<0; x-2020<0; x-2021<0; x-2022<0
=>M=-x+2019-x+2020-x+2021-x+2022=-4x+8082
Vì hàm số M=-4x+8082 là hàm số nghịch biến trên R
nên M nhỏ nhất khi x lớn nhất
Khi x<2019 thì x không có giá trị lớn nhất
=>M không có giá trị nhỏ nhất
TH2: 2019<=x<2020
=>x-2019>=0; x-2020<0; x-2021<0; x-2022<0
=>M=x-2019-x+2020-x+2021-x+2022=-2x+4034
Vì hàm số M=-2x+4034 là hàm số nghịch biến trên R
nên M nhỏ nhất khi x lớn nhất
Khi 2019<=x<2020 thì x không có giá trị lớn nhất
=>M không có giá trị nhỏ nhất
TH3: 2020<=x<2021
=>x-2019>0; x-2020>=0; x-2021<0; x-2022<0
=>M=x-2019+x-2020+2021-x+2022-x=4(1)
TH4: 2021<=x<2022
=>x-2019>0; x-2020>0; x-2021>=0; x-2022<0
=>M=x-2019+x-2020+x-2021+2022-x=2x-4038
Vì hàm số M=2x-4038 là hàm số đồng biến trên R
nên M nhỏ nhất khi x nhỏ nhất
Với 2021<=x<2022 thì \(x_{\min}=2021\)
=>\(M_{\min}=2\cdot2021-4038=4042-4038=4\) (2)
TH5: x>=2022
=>x-2019>0; x-2020>0; x-2021>=0; x-2022>=0
=>M=x-2019+x-2020+x-2021+x-2022=4x-8082
Vì hàm số M=4x-8082 là hàm số đồng biến trên R
nên M nhỏ nhất khi x nhỏ nhất
Khi x>=2022 thì \(x_{\min}=2022\)
=>\(M_{\min}=4\cdot2022-8082=8088-8082=6\) (3)
Từ (1),(2),(3) suy ra \(M_{\min}=4\) khi 2020<=x<=2022
Tìm GTNN của A và tìm x khi A đạt GTNN biết A =|x-2018|+|x-2020|+|x-2022|
Lời giải:
Sử dụng BĐT sau:
Cho $a,b$ thực. Khi đó $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$. Áp dụng vào bài toán:
$|x-2018|+|x-2022|=|x-2018|+|2022-x|\geq |x-2018+2022-x|=4$
$|x-2020|\geq 0$ (theo tính chất trị tuyệt đối)
$\Rightarrow A\geq 4+0=4$
Vậy GTNN của $A$ là $4$. Giá trị này đạt được khi $(x-2018)(2022-x)\geq 0$ và $x-2020=0$
Hay khi $x=2020$
@Vũ Văn Tuần:
Để biết vì sao $|a|+|b|\geq |a+b|$ đạt dấu "=" khi $ab\geq 0$ thì bạn đi chứng minh BĐT này thôi.
Xét các TH sau:
TH1: Ít nhất 1 trong 2 số bằng 0. Không mất tính tổng quát giả sử $a=0$. Khi đó: $|a|+|b|=|b|=|b+0|=|a+b|$
TH2: $a,b$ đều khác 0. Xét các TH nhỏ hơn:
TH2.1: $a,b$ cùng dương kéo theo $a+b$ dương. Khi đó:
$|a|=a; |b|=b; |a+b|=a+b$
$\Rightarrow |a|+|b|=|a+b|$
TH2.2: $a,b$ cùng âm thì kéo theo $a+b<0$ Khi đó:
$|a|=-a; |b|=-b; |a+b|=-(a+b)$
$\Rightarrow |a|+|b|=-a+(-b)=-(a+b)=|a+b|$
TH2.3: $a,b$ khác dấu. Không mất tính tổng quát giả sử $a$ dương $b$ âm.
$\Rightarrow |a|=a; |b|=-b$
Nếu $a+b\geq 0$ thì $|a+b|=a+b$
$\Rightarrow |a|+|b|-|a+b|=a+(-b)-(a+b)=-2b>0$ do $b<0$
$\Rightarrow |a|+|b|> |a+b|$
Nếu $a+b<0$ thì $|a+b|=-(a+b)$
$\Rightarrow |a|+|b|-|a+b|=a+(-b)--(a+b)=a+(-b)+a+b=2a> 0$ do $a>0$
$\Rightarrow |a|+|b|> |a+b|$
Từ các TH đã xét ta suy ra $|a|+|b|\geq |a+b|$
Dấu "=" xảy ra khi $a,b$ cùng dương, $a,b$ cùng âm hoặc ít nhất 1 trong 2 số $a,b$ bằng $0$
Tức là $ab\geq 0$
Tìm GTNN của M
M= |x-2020|+|x-2021|+|x-2022|
tìm GTNN của \(P=|x-2020|+|x-2022|+|x-2024|\)
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-2020|+|x-2024|=|x-2020|+|2024-x|\geq |x-2020+2024-x|=4$
$|x-2022|\geq 0$ (theo tính chất trị tuyệt đối)
$\Rightarrow |x-2020|+|x-2024|+|x-2022|\geq 4+0=4$
$\Rightarrow P\geq 4$
Vậy $P_{\min}=4$. Giá trị này đạt được khi $(x-2020)(2024-x)\geq 0$ và $x-2022=0$
Hay $x=2022$
Tính GTNN của A=x-2020 + x-2021 + x-2022
Các bạn ơi mình cần gấp giúp mình với
Tính GTNN, GTLN của biểu thức
A=2020-(x+1)^2022
C= 5/(x-3)^2+1
Ta có \(\left(x+1\right)^{2022}\ge0\forall x\Rightarrow A=2020-\left(x+1\right)^{2022}\le2020\forall x\)
Dấu "=" xảy ra <=> x + 1 = 0
=> x = -1
Vậy GTLN của A là 2020 khi x = -1
b) Để C đạt GTLN
=> \(\frac{5}{\left(x+3\right)^2}\)lớn nhất
=> (x - 3)2 nhỏ nhất
=> (x - 3)2 = 1
=> \(\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
Nếu x = 4 => C = 6
Vậy GTLN của C là 6 khi x = 4 hoặc x = 2
A = 2020 - ( x + 1 )2022
-( x + 1 )2022 ≤ 0 ∀ x => 2020 - ( x + 1 )2 ≤ 2020
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MaxA = 2020 <=> x = -1
C = \(\frac{5}{\left(x-3\right)^2+1\left(^∗\right)}\)
Để C đạt GTLN => (*) = ( x - 3 )2 + 1 đạt GTNN
( x - 3 )2 ≥ 0 ∀ x => ( x - 3 )2 + 1 ≥ 1
=> Min(*) = 1 <=> x - 3 = 0 => x = 3
=> MaxC = 5 <=> x = 3
Tìm GTNN của M= |x-2018|+|x-2019|+2020
Ta có: M = |x - 2018| + |x - 2019| + 2020
M = |x - 2018| + |2019 - x| + 2020 \(\ge\)|x - 2018 + 2019 - x| + 2020 = |1| + 2020 = 2021
Dấu "=" xảy ra khi: x - 2018 + x - 2019 = 0
<=> 2x - 4037 = 0
<=> 2x = 4037
<=> x = 2018,5
Vậy Min của M = 2021 tại x = 2018,5
Sửa lại một đoạn:
Dấu "=" xảy ra khi : (x - 2018)(2019 - x) = 0
<=> 2018 \(\le\)x \(\le\)2019
Tìm giá teij lớn nhất của biểu thức
-2|x-2020|-2021
T=___________________
2022+|x-2020|
Mọi người cố gắng hiểu đề giùm em ạ
Em cảm ơn nhiều
Tìm giá trị nhỏ nhất của: A =
là:
A.
2 tại x = 2021
B.
-1 tại x = 2020
C.
2020 tại x = 2021
D.
1 tại x = 2022