Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Linh
Xem chi tiết
thoi dai hiep si
14 tháng 9 2017 lúc 21:46

bai dai dong qua

uzumaki naruto
14 tháng 9 2017 lúc 22:10

a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0

\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)

\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)

\(-5x-8=0\)

\(x=-\frac{8}{5}\)

Mai mik làm mấy bài kia sau

uzumaki naruto
16 tháng 9 2017 lúc 21:24

2/

b) ( cái bài này chịu)

c) (x+1)^3-(x-1)^3-6(x-1)^2=-10

(x+1-x+1)\(\left[\left(x+1\right)^2+\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]\)\(-6\left(x^2-2x+1\right)=-10\)

\(2\left(x^2+2x+1+x^2-1+x^2-2x+1\right)-6x^2+12x-6=-10\)

\(2\left(3x^2+1\right)-6x^2+12x-6=0\)

\(6x^2+2-6x^2+12x-6=-10\)

\(12x=-10+4\)

\(12x=-6=>x=-\frac{1}{2}\)

d) (5x-1)^2-(5x-4)(5x+4)=7

\(25x^2-10x+1-25x^2+16=7\)

-10x = 7 - 17

-10x = -10

x= 1

Câu còn lại bn làm tương tự

3/

a) 

Ta có: 

(a+b+c)^2=3(ab+bc+ca)

a^2 + b^2 + c^2 + 2ab + 2ac + 2bc = 3ab + 3bc + 3ac

a^2 + b^2 + c^2 + 2ab + 2ac + 2bc - 3ab - 3bc - 3ac = 0

a^2 + b^2 + c^2  - ac - bc - ab = 0

2a^2 + 2b^2 + 2c^2  - 2ac - 2bc - 2ab = 0

(a2-2ab+b2)+(a2-2ac+c2) + (b2-2bc +c2) = 0

(a-b)^2 + (a-c)^2 + (b-c)^2 =0

=> a=b=c

Ngô Linh
Xem chi tiết
_Guiltykamikk_
23 tháng 5 2018 lúc 17:14

\(A=x^2-2x+10\)

\(A=\left(x^2-2x+1\right)+9\)

\(A=\left(x-1\right)^2+9\)

Mà  \(\left(x-1\right)^2\ge0\)

\(\Rightarrow A\ge9\)

Dấu "=" xảy ra khi :

\(x-1=0\Leftrightarrow x=1\)

Vậy Min A = 9 khi x = 1

_Guiltykamikk_
23 tháng 5 2018 lúc 17:17

\(B=x^2-5x-7\)

\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)

\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)

Mà  \(\left(x-\frac{5}{2}\right)^2\ge0\)

\(\Rightarrow B\ge-\frac{53}{4}\)

Dấu "=" xảy ra khi :

\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Vậy  \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)

_Guiltykamikk_
23 tháng 5 2018 lúc 17:20

\(C=3x^2+3x-5\)

\(3C=9x^2+9x-15\)

\(3C=\left(9x^2+9x+\frac{9}{4}\right)-\frac{69}{4}\)

\(3C=\left(3x+\frac{3}{2}\right)^2-\frac{69}{4}\)

Mà  \(\left(3x+\frac{3}{2}\right)^2\ge0\)

\(\Rightarrow3C\ge-\frac{69}{4}\)

\(\Leftrightarrow C\ge-\frac{23}{4}\)

Dấu "=" xảy ra khi :

\(3x+\frac{3}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy ...

Lê Song Phương
Xem chi tiết
Xyz OLM
3 tháng 2 2023 lúc 21:37

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

Xyz OLM
3 tháng 2 2023 lúc 22:03

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

Trần Đăng Bách
Xem chi tiết
Trịnh Tiến Đức
3 tháng 10 2015 lúc 20:39

a) goi so can tim la abcd

ta co abcd=72a+72b+72c+72d

=> 1000a+100b+10c+d=72a+72b+72c+72d

=> 928a+28b=62c+71d

Tu lam tiep 

b) câu hỏi tương tự 

c) Theo đề bài:

ABCDE + 41976 = EDCBA

A x 10 000 + B x 1 000 + C x 100 + D x 10 + E +  41 976 = E x 10 000 + D x 1 000 + C x 100 + B x 10 + A

A x 9 999 + B x 990 + 41 976 = E x 9 999 + D x 990 

A x 101 + B x 10+ 424 = E x 101 + D x 10 ( Chia cả 2 vế cho 99)

Vì EDCBA < 100 000 nên ABCDE < 100 000 - 41 976 = 58 024 => A < 6 

+) Nếu A = 5 thì 505 + B x 10 + 424 = E x 101 + D x 10  => 929 + B x 10 = E x 101 + D x 10

Vì 929 + B x 10 có tận cùng là 9 ; E x 101 + D x 10 có tận cùng là E nên E = 9 

=> 929 + B x 10 = 909 + D x 10 => 20 + B x 10 = D x 10 => 2 + B = D. 

Chọn B= 0 thì D = 2; B = 1 thì D = 3; B = 2 thì D = 4; B = 3 thì D = 5; B = 4 thì D = 6; B = 5 thì D = 7; B = 6 thì D = 8; B = 7 thì D = 9

+) Nếu A = 4 thì  828 + B x 10 = E x 101 + D x 10

=> E = 8 => 828 + B x 10 = 808 + D x 10 => 20 + B x 10 = D x 10 => 2 + B = D: tương tự như trên

+) Nếu A = 3 thì ta có : E = 7; 2 + B = D

+) Nếu A = 2 thì E = 6;  2 + B = D : (như trên)

+) Nếu A = 1 thì  E = 5; 2 + B = D

Vậy các chữ cái A có thể bằng 1;2;3;4; hoặc 5 tương ứng chữ cái E bởi 5;6;7;8 hoặc 9

Chữ cái B; D bởi các chữ số thỏa mãn 2 + B = D; C là chữ số tùy ý

Michiel Girl Mít Ướt
3 tháng 10 2015 lúc 20:41

Trịnh Tiến Đức t rê chuột mỏi lắm -_- 

phung thanh tu
Xem chi tiết
Tranthithuy
16 tháng 11 2023 lúc 20:53

Một mảnh vườn hình chữ Nhật có chu vi bằng 296m. Biết mảnh vườn có chiều dài hơn chiều rộng 28m. Tính chiều dài và chiều rộng của mảnh vườn đó 

Đỗ Khánh Linh
Xem chi tiết
tran thanh tam
Xem chi tiết
Hoàng Phúc
2 tháng 10 2016 lúc 16:33

P=n3+4n-5=n3-n+5n-5=n(n2-1)+5(n-1)

=n(n-1)(n+1)+5(n-1)=(n-1)[n(n+1)+5]

=(n-1)(n2+n+5)

Vì n \(\in\) N nên n2+n+5 > 1

Để P là số nguyên tố thì n-1=1=>n=2

Thử lại thấy n=2 thỏa mãn

Vậy n=2

Quyên Phan Võ Tố
21 tháng 12 2016 lúc 21:49

1) a)  x  =  -7 / 44

    b)  x  =  -1 / 8

Trần Văn Thành
Xem chi tiết
Phạm Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Akai Haruma
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Akai Haruma
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$