cho tam giác ABC. chứng minh điều kiện cần và đủ để hai trung tuyến BM và CN vuông góc với nhau là b^2+ c^2 = 5a^2
cho tam giác ABC . Chứng minh rằng điều kiện cần và đủ để 2 trung tuyến kẻ từ B và C vuông góc với nhau là : b2 + c2 = 5a2
Cho tam giác $A B C$. Chứng minh rằng điều kiện cần và đủ để hai trung tuyến kẻ từ $B$ và $C$ vuông góc với nhau là $b^{2}+c^{2}=5 a^{2}$.
Cho tam giác ABC, các đường trung tuyến BM và CN cắt nhau tại I. Gọi H là trung điểm của IB, K là trung điểm của IC.
a) Chứng minh tứ giác MNHK là hình bình hành
b) Nếu các đường trung tuyến BM và CN vuông góc vời nhau thì tứ giác MNHK là hình gì?
c) Tam giác ABC có điều kiện gì thì tứ giác MNHK là hình chữ nhật?
d) Tam giác ABC có điều kiện gì thì tứ giác MNHK là hình vuông?
cho đoạn thẳng BC cố định có độ dài bằng 2a và 1 điểm a di động sao cho góc BAC =90 độ .gọi BM,CN là các đường trung tuyến của tam giác ABC
a, chứng minh BC2+CN2=5A2
B, Tìm điều kiện của tam giác ABC để BM+CN đạt giá trị lớn nhất
Cho tam giác ABC cân tại A. Vẽ BM và CN là 2 đường trung tuyến. a/ Chứng minh: BM = CN b/Chứng minh: Tứ giác BNMC là hình thang cân. c/ Gọi I là giao điểm của BM và CN. Chứng minh: AI vuông góc với MN
cho tam giác ABC 2 trung tuyến BM VÀ CN cắt nhau tại G.Lấy E và F thứ tự là trung điểm của GC và GB. chứng minh tứ giác MNEF là hình bình hành.Tìm điều kiện của tam giác ABC để hình bình hành MNEF là hình thoi,hình chữ nhật,hình vuông
Cho tam giác ABC, trung tuyến BM,CN. Cạnh BC=a, AC=b,Ab=c.
CMR nếu b2+c2=5a2 thì BM và CN vuông góc với nhau
Cho tam giác ABC cân tại A,2 đường trung tuyến BM và CN cắt nhau tại I . Chứng Minh :
A) BM=CN
B) tam giác IBC cân
C) AI là trung tuyến
D) Qua B kẻ Bx vuông góc với AB , qua C kẻ Cy vuông góc với AC
Bx cắt Cy tại K . Chứng minh rằng A;I;K thằng hàng
Cho tam giác ABC có 3 góc nhọn và các trung tuyến BM và CN vuông góc với nhau. Chứng minh: \(cotC+cotB\ge\dfrac{2}{3}\)
Kẻ đg cao AH, trung tuyến AD, trọng tâm G
Tg AHD vuông tại H nên \(AH\le AD\Rightarrow\dfrac{BC}{AH}\ge\dfrac{BC}{AD}\left(4\right)\)
Ta có \(\cot\widehat{B}+\cot\widehat{C}=\dfrac{BH}{AH}+\dfrac{CH}{AH}=\dfrac{BC}{AH}\ge\dfrac{BC}{AD}\left(1\right)\)
Mà BM vuông góc CN nên GD là trung tuyến ứng vs ch BC
\(\Rightarrow BC=2GD\left(2\right)\)
Mà G là trọng tâm nên \(3GD=AD\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\left(4\right)\Rightarrow\cot\widehat{B}+\cot\widehat{C}\ge\dfrac{BC}{AD}=\dfrac{2GD}{3GD}=\dfrac{2}{3}\)