Kẻ đg cao AH, trung tuyến AD, trọng tâm G
Tg AHD vuông tại H nên \(AH\le AD\Rightarrow\dfrac{BC}{AH}\ge\dfrac{BC}{AD}\left(4\right)\)
Ta có \(\cot\widehat{B}+\cot\widehat{C}=\dfrac{BH}{AH}+\dfrac{CH}{AH}=\dfrac{BC}{AH}\ge\dfrac{BC}{AD}\left(1\right)\)
Mà BM vuông góc CN nên GD là trung tuyến ứng vs ch BC
\(\Rightarrow BC=2GD\left(2\right)\)
Mà G là trọng tâm nên \(3GD=AD\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\left(4\right)\Rightarrow\cot\widehat{B}+\cot\widehat{C}\ge\dfrac{BC}{AD}=\dfrac{2GD}{3GD}=\dfrac{2}{3}\)