Bài 1: Tìm x E Z biết:
a)x(x+3)=0
b)(x-1)(x^2+1)=0
bài 1:tìm x thuộc Z biết
a,|x+2|lớn hơn hoặc bằng 5
b,|x+1|>2
bài2 tìm x thuộc Z biết
a,|x-1|-x+1=0
b,|2-x|-2=x
c,|x+7|=|x-9|
bài 3:tìm x thuộc Z biết
a,|x+25|+|-y+5|=0
b,|x-40|+|x-y+10|lớn hơn hoặc bằng 0
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
1.Tìm a,b,c,d,e\(\inℤ\) biết a + b + c + d + e = 0 và a + b = c + d = d + e = 2
2.Tìm x,y,z\(\inℤ\) biết :
a) x + y + z = 0, x + y = 3, y + z = -1
b) x + y = 3, y + z = 1, z + x = -2
Bài 1 Tìm X biết (x+4)²-81=0 Bài 2 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 3 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)
Tìm x thuộc Z biết:
a, x (x + 2) = 0
b, (x - 1) (x - 2) = 0
c, (x - 2) (x^2 + 1) = 0
d, (x + 1) (x^2 - 4) = 0
e, x (x - 3) > 0
a) \(x\left(x+2\right)=0\)
=> \(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy ...
b) (x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy ...
còn lại tương tự
a) x(x+2) = 0
=> x=0 hoặc x+2 = 0
+ x + 2 = 0
x = 0 - 2
x = -2
Vậy x thuộc tập hợp 0 ; -2
b) (x-1)(x-2)=0
=> x-1 =0 hoặc x-2=0
+ x-1=0 + x-2=0
x=0+1 x=0+2
x=1 x=2
Vậy x thuộc tập hợp 1;2
ý c , d làm giống 2 ý đầu
e) x(x-3)>0
=> \(\hept{\begin{cases}x>0\\x-3>0\end{cases}}\)=> \(\hept{\begin{cases}x>0\\x>3\end{cases}}=>\hept{\begin{cases}\\\end{cases}}x>3\)
Vậy x > 3
Bài 1: Tìm x, biết
a) (x-2)^2 + (y-3)^2=0
b) (x-1)^x+2=0 với x thuộc Z
a)Có \(\left(x-2\right)^2\ge0;\left(y-3\right)^2=0\)
Mà \(\left(x-2\right)^2+\left(y-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
b)\(\left(x-1\right)^{x+2}=0\)
\(\Rightarrow x-1=0\Leftrightarrow x=1\)
a) \(\left(x-2\right)^2+\left(y-3\right)^2=0\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
\(\Rightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-2=0\\y-3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
b) \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)
\(\left(x-1\right)^{x+2}\times1-\left(x-1\right)^{x+2}\times\left(x-1\right)^4=0\)
\(\left(x-1\right)^{x+2}\times[1-\left(x-1^4\right)]=0\)
TH 1: \(\left(x-1\right)^{x+2}=0\) TH 2: \(1-\left(x-1\right)^4=0\)
\(\Rightarrow x-1=0\) \(\left(x-1\right)^4=1\)
\(\Rightarrow x=1\) \(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
Vậy \(x\in[0;1;2]\)
trả lời ngay cho mình nhé
bài 1 tìm x thuộc Z
a) x^2+2.x=0
b) (-2.x).(-4.x)+28=100
c) 5.x.(-x)^2+1=6
d) 3.x^2+12.x=0
e) 4.x.3=4.x
bài 2: tìm x,y thuộc Z
a) (x+2).(x-1)=0
b) (y+1).(x.y-1)=3
c) 2.x.y+x-6.y=15
d) x.y+2.x-y+9
e)3.x.y-y=-12
g) 3.x.y-3.x-y=0
h) 5.x.y+5.x+2.y =-16
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
d, 3\(x^2\) + 12\(x\) = 0
3\(x.\left(x+4\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-4; 0}
e, 4.\(x.3\) = 4.\(x\)
12\(x\) - 4\(x\) = 0
8\(x\) = 0
\(x\) = 0
Bài 1: tìm x thuộc Z biết:
a)(15-x)(-4-x)<0
b)(x-2)(7-x)>0
c)(x^2-13)(x^2=17)<0
Bài 2: Tìm a;b thuộc Z biết:
a.b=12 và a+b=-7
Bài 1: Cho từng cái < hoặc > 0 rồi giải ra tìm điều kiện của x
Bài 2:
Phân tích số 12 ra là:
3 x 4 = 12
-3 x (-4) = 12
Ta thấy:
3 + 4 = 7
-3 + (-4) = -7 (đáp ứng đúng yêu cầu đề)
=> a = -3 và b = -4
bài 15:Tìm x thuộc Z biết:
a) x(x - 3)=0
b) x(x + 9)=0
c) (x + 1) (x - 1)=0
d) (x - 13) (x^2 + 8)=0
Trả lời:
a) x(x - 3)=0
=> x = 0 hoặc x - 3 = 0
=> x = 3
Vậy x = 0; x = 3
b) x(x + 9)=0
=> x = 0 hoặc x + 9 = 0
=> x = -9
Vậy x = 0; x = -9
c) (x + 1) (x - 1)=0
=> x + 1 = 0 hoặc x - 1 = 0
=> x = -1 x = 1
Vậy x = -1; x = 1
d) (x - 13) (x2 + 8)=0
=> x - 13 = 0 hoặc x2 + 8 = 0
=> x = 13 x2 = -8 (vô lí, vì x2 \(\ge\)0)
Vậy x = 13
Bài 3 : Tìm x Z biết.
a) x(x + 2) = 0 e) 7x – 13 = 3 2 .4
b) 5 – 2x = -7 f) 155 – 5(x + 3) = 80
c) (x + 3)(x – 4) = 0 g) 119 + 3 3 .x = 2 3 . 5 2
d) – 32 – 4(x – 5) = 0 h) 3(2x + 1) – 19 = 14
x(x+2)=0
suy ra x=0 hoặc x+2=0
5-2x=-7
2x=-7+5
2x=-(7-5)
2x=-2
x=-2:2
x=-1
Vậy x=-1
NHỚ TÍCH MK NHA
Tự học giúp bạn có được một gia tài
Jim Rohn – Triết lý cuộc đời