Tìm x \(\in\) Z, biết:
|x + 3| = 5
2, Tìm x \(\in\)Z, biết:(x+5)(3x-12)>0
3, Tìm x \(\in\)Z, biết:(x2+5)(x3+10)(x3+15)(x3+30)<0
2, có 2 th
th1: x+5>0 và 3x-12>0
th2: x+5<0 và 3x-12<0
bn tự giải tiếp nha phần sau dễ
mk biết làm bài 2 rồi nhưng bài 3 mk chưa biết làm, bạn chỉ cầ làm kĩ bài 3 cho mk thôi
Tìm \(x\in Z\) để \(A\in Z\) biết \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)
ĐKXĐ: \(x\ge0;x\ne25\)
\(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}=\dfrac{\sqrt{x}-5+7}{\sqrt{x}-5}=1+\dfrac{7}{\sqrt{x}-5}\)
Để \(A\in\mathbb{Z}\) thì: \(\dfrac{7}{\sqrt{x}-5}\) nhận giá trị nguyên
\(\Rightarrow 7\vdots\sqrt{x}-5\)
\(\Rightarrow\sqrt{x}-5\inƯ\left(7\right)\)
\(\Rightarrow\sqrt{x}-5\in\left\{1;7;-1;-7\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{6;12;4;-2\right\}\) mà \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}\in\left\{4;6;12\right\}\)
\(\Rightarrow x\in\left\{16;36;144\right\}\left(tm\right)\)
Vậy \(A\in \mathbb{Z}\) khi \(x\in\left\{16;36;144\right\}\)
Tìm x \(\in\)Z biết:
|3 – x| = x – 5
TH1 : 3 - X = X - 5
TH2 : 3 - X = - X + 5
Tìm x \(\in Z\) biết (x-1)(x+3)(x+5)(x+8)<0
- | -8 | - | -5 | - | -3 | - | 1 | + | |
x-1 | _ | _ | _ | _ | _ | _ | _ | 0 | + |
x+3 | _ | _ | _ | _ | _ | 0 | + | + | + |
x+5 | _ | _ | _ | 0 | + | + | + | + | + |
x+8 | _ | 0 | + | + | + | + | + | + | + |
(x-1)(x+3)(x+5)(x+8) | + | 0 | - | 0 | + | 0 | - | 0 | + |
Hy vọng bạn hiểu.
Bạn chọn các GT đặc biệt rồi sắp xếp theo thứ tự tăng dần. Giữa 2 GT thì để 1 khoảng trống để xét các GT lọt giữa. Phía trước cùng là \(-\infty\) phía sau cùng là \(+\infty\) cái này nếu trình bày thì ghi hai ký hiệu đó ở hàng thứ nhất còn các hàng còn lại chỉ ghi "-" hoặc "+" để biểu thị dấu. Nếu chưa hiểu thì liên hệ lại nhé.
Đây là đáp án:
-8<x<-5
hoặc -3<x<1
Câu 1
a) Tìm x, y, z \(\in\)Z, biết : |x| + |y| + |z| = 0
b) Tìm x\(\in\)Z, biết : |x + 2| + |x + 5| + |x + 9| + |x + 11| + 5x
c
Tìm \(x\in Z,biết:\)
`x(5-x)`\(\ge0\)
Ta có: \(x\left(5-x\right)\ge0\)
+) TH1: \(\left\{{}\begin{matrix}x>0\\5-x>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x< 5\end{matrix}\right.\Rightarrow0< x< 5\)
Mà \(x\in\mathbb{Z}\) nên: \(x\in\left\{1;2;3;4\right\}\) (nhận)
+) TH2: \(\left[{}\begin{matrix}x=0\\5-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\left(nhận\right)\)
+) TH3: \(\left\{{}\begin{matrix}x< 0\\5-x< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 0\\x>5\end{matrix}\right.\left(vô.lí\right)\)
=> loại
Vậy: ...
1 . Tìm x , y \(\in\)Z biết :
a , ( 15 -x ) + ( x - 12 ) = 7 - ( - 5 + x )
b , x - { 57 - [ 42 + ( - 23 - x ) ] } = 13 - { 47 + [ 25 - ( 32 - x ) ] }
c , ( x - 3 ) + ( x - 2 ) + ( x - 1 ) + .............. +10 + 11 = 11
d , ( x - 3 ) . ( 2y + 1 ) = 7
2 . Tìm x , y \(\in\)Z biết :
a , I x - 8 I + I y + 2 I = 2
b , x + ( x + 1 ) + ( x + 2 )+ ... + 2003 = 2003
3 . Tìm x \(\in\)Z biết : ( 2x2 - 10x + 5 ) \(⋮\)( x - 5 )
pn nào làm đúng mk tick cho
1a/ \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\)
=> \(\left(15-x\right)+\left(x-12\right)+\left(-5+x\right)=7\)
=> \(15-x+x-12-5+x=7\)
=> \(\left(15-12-5\right)-\left(x+x+x\right)=7\)
=> \(\left(15-12-5\right)-7=3x\)
=> \(3x=-2-7\)
=> \(3x=-9\)
=> \(x=\frac{-9}{3}=-3\)
b/ \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\)
=> \(x-57-42-23-x=13-47+25-32+x\)
=> \(x-x+x=13-47+25-32+57+42+23\)
=> \(x=\left(13+23\right)-\left(47+57\right)+\left(25+57\right)-\left(32+42\right)\)
=> \(x=36-104+82-74\)
=> \(x=-60\)
d/ \(\left(x-3\right)\left(2y+1\right)=7\)
Vì 7 là số nguyên tố nên ta có 2 trường hợp:
TH1: \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=> \(\hept{\begin{cases}x=4\\y=3\end{cases}}\).
TH2: \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\).
Các cặp (x, y) thoả mãn điều kiện: \(\left(4;3\right),\left(10;0\right)\).
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
tìm x \(\in\)Z biết
(x-3)(x+5)<0
x - 3 < 0 hoặc x + 5 < 0 => x < 3 hoặc x < - 5