Cho tam giác ABC cân tại A. M là trung điểm của BC, kẻ ME vuông góc với AB tại E, MI vuông góc với AC tại I
a, CM: AE=AI
b, CM: AM là đường trung trực của đoạn thẳng EI
c, CM: EI//BC
d, Giả sử AB = 15cm, BC=18cm. Tính độ dài AM và ME
Cho tam giác ABC cân tại A. M là trung điểm của BC, kẻ ME vuông góc với AB tại E, MI vuông góc với AC tại I
a, CM: AE=AI
b, CM: AM là đường trung trực của đoạn thẳng EI
c, CM: EI//BC
d, Giả sử AB = 15cm, BC=18cm. Tính độ dài AM và ME
a) Vì \(\Delta\)ABC cân tại A
=> AB = AC và \(\widehat{ABC}\) = \(\widehat{ACB}\)
hay \(\widehat{EBM}\) = \(\widehat{ICM}\)
Xét \(\Delta\)EBM vuông tại E và \(\Delta\)ICM vuông tại I có:
BM = CM (suy từ gt)
\(\widehat{EBM}\) = \(\widehat{ICM}\) (c/m trên)
=> \(\Delta\)EBM = \(\Delta\)ICM (ch - gn)
=> EB = IC (2 cạnh t/ư)
Ta có: AE + EB = AB
AI + IC = AC
mà EB = IC; AB = AC => AE = AI
b) Gọi giao điểm của AM và EI là D.
Vì \(\Delta\)EBM = \(\Delta\)ICM (câu a)
=> EM = IM (2 cạnh t/ư)
Xét \(\Delta\)AEM và \(\Delta\)AIM có:
AE = AI (câu a)
AM chung
EM = IM (c/m trên)
=> \(\Delta\)AEM = \(\Delta\)AIM (c.c.c)
=> \(\widehat{EAM}\) = \(\widehat{IAM}\) (2 góc t/ư)
hay \(\widehat{EAD}\) = \(\widehat{IAD}\)
Xét \(\Delta\)ADE và \(\Delta\)ADI có:
AE = AI (câu a)
\(\widehat{EAD}\) = \(\widehat{IAD}\) (c/m trên)
AM chung
=> \(\Delta\)ADE = \(\Delta\)ADI (c.g.c)
=> DE = DI (2 cạnh t/ư) Do đó D là tđ của EI (1) và \(\widehat{ADE}\) = \(\widehat{ADI}\) (2 góc t/ư) mà \(\widehat{ADE}\) + \(\widehat{ADI}\) = 180o (kề bù) => \(\widehat{ADE}\) = \(\widehat{ADI}\) = 90o Do đó AD \(\perp\) EI hay AM \(\perp\) EI (2) Từ (1) và (2) suy ra AM là đg trung trực của EI. c) Vì AE = AI nên \(\Delta\)AEI cân tại A => \(\widehat{AEI}\) = \(\widehat{AIE}\) Áp dụng tc tổng 3 góc trong 1 tg ta có:\(\widehat{AEI}\) + \(\widehat{AIE}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{AEI}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{AEI}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (3)
Do \(\Delta\)ABC cân tại A
=> \(\widehat{ABC}\) = \(\widehat{ACB}\)
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (4) Từ (3) và (4) suy ra \(\widehat{AEI}\) = \(\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên EI // BC. d) Ta có: BM = \(\frac{1}{2}\)BC = 9cmXét \(\Delta\)ABM và \(\Delta\)ACM có:
AB = AC
\(\widehat{BAM}\) = \(\widehat{CAM}\) (tự suy ra)
AM chung
=> \(\Delta\)ABM = \(\Delta\)ACM (c.g.c)
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) (2 góc t/ư)
mà \(\widehat{AMB}\) + \(\widehat{AMC}\) = 180o (kề bù)
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) = 90o
Do đó AM \(\perp\) BC
=> \(\Delta\)ABM vuông tại M
Áp dụng định lý pytago vào \(\Delta\)ABM vuông tại M có:
AB2 = AM2 + BM2
=> 152 = AM2 + 92
=> AM = 12cm
Cho tam giác ABC cân tại A, vẽ trung tuyến AM.Từ M kẻ ME vuông góc với AB tại E,kẻ MF vuông góc với AC tại F
a) CHứng minh tam giác BEM = tam giác CFM
b) C/m AM là đường trung trực của đoạn thẳng EF
c) Gọi I là trọng tâm của tam giác ABC, giả sử AI =\(\frac{8}{3}\)cm,AC = 5cm .Tính độ dài đoạn thẳng BC
Cho tam giác ABC cân tại A có M là trung điểm của BC.
a/ CM: tam giác ABM = tam giác ACM
b/ Từ M kẻ ME vuông góc với AB; MF vuông góc với AC ( E thuộc Ab, F thuộc AC )
CM: tam giác AEM = tam giác AFM
c/ CM: AM vuông góc với EF
d/ Trên tia FM lấy điểm I sao cho IM = FM. CM: EI // AM
a) M là trung điểm của BC
=> BM=CM
tam giác ABC cân tại A
=> AB=AC
xét tam giác ABM và tam giác ACM có
AB=AC
BM=CM
cạnh AM chung
do đó : tam giác ABM= tam giác ACM ( c.c.c)
b) do tam giác ABM = tam giác ACM
=> góc A1 = góc A2
xét tam giác AEM và tam giác AFM có
cạnh AM chung
góc A1= góc A2
góc AEM=góc AFM =90 độ
do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)
c) gọi N là giao của AM va EF
do tam giác AEM= tam giác AFM
=> AE=AF
xét tam giác AEN và tam giác AFN có
cạnh AN chung
góc A1 = góc A2
AE=AF
do đó tam giác AEN=tam giác AFN ( c.g.c)
=> góc N1=góc N2
mà góc N1 + góc N2 = 180 độ ( kề bù)
=> góc N1= góc N2=90 độ
=> AN vuông góc EF
hay AM vuông góc EF
Cho tam giác ABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường vuông góc với AC, chúng cắt nhau tại D.
a, Chứng minh rằng AD là tia phân giác của góc A.
b, Đường thẳng qua B và vuông góc với BC cắt đường thẳng CA tại E.
CMR: Tam giác ABE cân và BA là đường trung tuyến của tam giác EBC
c, Gọi I là giao điểm của AD và BC.
CMR: AI song song với BE và AI=\(\frac{1}{2}\)BE.
d, Giả sử BA=\(\sqrt{3}cm\), BC=\(\sqrt{8}\)cm. Chứng minh AB vuông góc với EI.
Cho tam giác ABC cân tại A, qua B kẻ đường thẳng vuông góc với AC tại D. tia phân giác của góc BAC cắt BD tại I. Trên AB lấy Điểm E sao cho AE=AD. CM a) IE vuông góc với AB, b) CM ba điểm C,I,E thẳng hàng, c) H là trung điểm của BC, Cm ba điểm A,I,H thẳng hàng
Cho tam giác ABC có M là trung điểm của BC. Trên tia AM lấy điểm E sao cho MA = ME. Kẻ đường thẳng vuông góc với AB tại B cắt AE tại D.
A). CM tam giác AMB bằng tan giác EMC và AB bằng CE
B). Cm AC//BE
C). Trên đoạn AM lấy điểm I sao cho M là trung điểm của DI. Cm CI vuông góc với CE.
cho tam giác abc cân tại a. m là trung điểm của bc. kẻ me vuông góc ab tại e, mf vuông góc với ac tại f
kẻ đường thẳng d vuông góc AB tại B, kẻ đường d' vuông góc với ac tại C , hai đường d và d' giao nhau tại D. CM A,M,D thằng hàng
Xét ΔABD vuông tại D và ΔACD vuông tại D có
AD chung
AB=AC
=>ΔABD=ΔACD
=>DB=DC
ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là trung trực của BC(1)
DB=DC
=>D nằm trên trung trực của BC(2)
Từ (1), (2) suy ra A,M,D thẳng hàng
Cho tam giác ABC cân tại A trên BC lấy D, trên tia đối của CB lấy E sao cho BD=CE. Từ D kẻ đường vuông góc với BC cắt AB tại M, từ E kẻ đường vuông góc với BC cắt AC tại N
a) CM MD=NE
b) Cho MN cắt DE tại I. CM I là trung điểm cua DE
c) Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB, chúng cắt nhau tại O. CM AO là đường trung trực của BC
a)Vì tam giác abc cân ở a =>góc abc=góc acb.mà góc acb =góc ecn (đối đỉnh) =>góc abc=góc ecn.
Xét tam giác bmd và tam giác cne có :bd=ce; góc abc=góc ecn =>tam giác bmd =tam giác ecn(cạnh góc vuông và góc nhọn kề)
=>md=ne.
b)Vì dm và en cung vuông góc với bc =>dm song song với en=>góc dmc=góc enc(so le trong)
xét tam giác dim và tam giác ein có :góc dmc =góc enc;góc mid=góc nie(đối đỉnh);góc mdi=góc nei=90 độ=>tam giác dim=tam giác ein(g.g.g.)
=>di=ie=>i là trung điểm de
c)gọi h là giao của ao với bc.
ta có:xét tam giác abo bằng tam giác aco=>bo=co=>o thuộc trung trực của bc .tương tự a thuộc trung trực của bc=>ao là trung trực bc
Cho tam giác ABC cân tại A, AB> AC, H là trung điểm của BC
a) CM: tam giác ABH= tam giác ACH. Từ đó suy ra AH vuông góc BC
b) Tính độ dài AH nếu BC= 4cm, AB= 6cm
c) Tia phân giác của góc B cắt AH tại I. CM: tam giác BIC cân
d) Đường thẳng đi qua A và song song với BC cắt tia BI, CI lần lượt tại M, N. CM: A là TĐ của đoạn thẳng MN
e) Kẻ EI vuông góc với AB tại E, IF vuông góc với AC tại F. CM: IH= IE= IF
f) CM: IC vuông góc với MC
MỌI NGƯỜI GIÚP EM CÂU D,E, F
EM CẦN GẤP LẮM