Cho tam giác ABC.Gọi I là trung điểm của cạnh BC.CMR AI=1/2BC
Cho tam giác ABC vuông tại A gọi M là trung điểm của BC.CMR AM=1/2BC
Cho tam giác ABC vuông tại A.Gọi I là trung điểm của BC.CMR AI=1/2BC
Ta có: ΔABC vuông tại A
mà AI là đường trung tuyến
nên AI=BC/2(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB,điểm E trên cạnh AC sao cho AD=CE. Gọi I là trung điểm của DE, K là giao điểm của AI và BC.CMR: ADKE là hình bình hành
Giải:
HÌNH TỰ VẼ
Qua \(I\) và \(D\), kẻ IN song song với \(BC;DM\) song song với \(BC\) \(\left(M;N\in AC\right)\)
Do \(\Delta ABC\) cân nên \(\Delta AMD\) cân.
\(\Rightarrow AM=AD\Rightarrow AM=CE\) \(\left(1\right)\)
Mặt khác \(IN\) song song với \(BC\) nên \(IN\) song song với \(MD\).
Xét \(\Delta EMD\) có \(I\) là trung điểm của \(DE\), \(IN\) song song với \(MD\) nên \(N\) là trung điểm của \(ME\). \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) => \(N\) là trung điểm của \(AC\) .
Xét\(\Delta ACK\) có \(N\) là trung điểm của \(AC\). \(NI\) song song với \(CK\) nên \(I\) là trung điểm của \(AK\).\(\left(\text{đ}pcm\right)\)
Tham khảo nha:
Giải:
Qua I và D , kẻ IN song song với BC, DM song song với BC (M,N thuộc AC).
Do △ABC△ABC cân nên △AMD△AMD cân => AM=AD => AM=CE (1)
Mặt khác IN song song với BC nên IN song song với MD.
Xét △EMD△EMD có I là trung điểm của DE , IN song song với MD nên N là trung điểm của ME. (2)
Từ (1) và (2) => N là trung điểm của AC .
Xét △ACK△ACK có N là trung điểm của AC. NI song song vs CK nên I là trung điểm của AK.
(dpcm)
Cho tam giác ABC.Gọi D,Etheo thứ tự là trung điểm của AB,AC.
a, trên tia đối của tiaED lấy điểm I sao cho EI=ED.CMR DI=BC
b,CMR DE=1/2BC;DE//BC
Cho tam giác ABC.Gọi E và F là trung điểm của cạnh BC và AC.BF cắt AE tại I . Chứng minh tỉ số AE trên AI chiếm \(\frac{2}{3}\)
Cho hình tam giác ABC.gọi M là trung điểm của cạnh AC,N là điểm nằm trên cạnh AB sao cho AN=1/3AB.Biết S tam giác ANM là 4cm2 tính S hình tam giác ABC?
Cho hình tam giác ABC.Gọi M là trung điểm của cạnh BC,gọi N là trung điểm của cạnh AB.Biết diện tích hình tam giác ANM bằng 6 cm vuông.Tính diện tích hình tam giác ABC
Ta có diện tích ANM = NMB vì có hai cạnh đáy là NB=NA. Đều có chiều cao hạ từ đỉnh M.
Diện tích tam giác BAM là
Ta có diện tích ANM = NMB vì có hai cạnh đáy là NB=NA. Đều có chiều cao hạ từ đỉnh M.
Diện tích tam giác BAM là
6+6 =12 (cm2)
Diện tích tam giác ABM = AMC vì có đáy BM = Mc. Đều có chiều cao hạ từ đỉnh A nên diện tich ABC là :
12+12=24 (cm2)
Đ/S : 24 cm2
ĐÚNG là bằng 24cm2 đó, mấy bạn lớp mình cũng làm bằng chừng đó
Cho tam giác ABC vuông tại A có AC = 1/2BC. Trên cạnh AC lấy điểm N, trên cạnh BC lấy điểm M sao cho CN = BM. Gọi I là trung điểm của MN. Chứng minh đường trung tuyến kẻ từ A của tam giác ABC đi qua điểm I
cho hình tam giác abc.gọi m là trung điểm của cạnh bc,gọi n là trung điểm của cạnh ab .biết diện tích hình tam giác anm bằng 6 cm vuông .tính diện tích hình tam giác abc