Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)CMR:\(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
b) \(2< \frac{\left(a+b\right)}{a+b+c}+\frac{\left(b+c\right)}{b+c+d}+\frac{\left(c+d\right)}{c+d+a}+\frac{\left(d+a\right)}{d+a+b}< 4\)
Cho a,b,c,d > 0 CMR :
a)\(A=\frac{\left(a+c\right)}{a+b}+\frac{\left(b+d\right)}{b+c}+\frac{\left(c+a\right)}{c+d}+\frac{\left(d+b\right)}{d+a}4\ge\)
b, \(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\); \(\frac{b+c}{b+c+a}>\frac{b+c}{a+b+c+d}\)
\(\frac{c+d}{c+d+a}>\frac{c+d}{a+b+c+d};\frac{d+a}{a+d+b}>\frac{a+d}{a+b+c+d}\)
Cộng các bĐT trên
=> \(B>\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
Ta có Với \(0< \frac{x}{y}< 1\)
=> \(\frac{x}{y}< \frac{x+z}{y+z}\)
Áp dụng ta có
\(B>\frac{a+b+d}{a+b+c+d}+...+\frac{d+a+c}{a+b+c+d}=3\)
Vậy 2<B<3
CHo \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) . CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{ \left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)
Áp dụng tính chất.......
a/b=b/c=c/d=a+b+c/b+c+d suy ra (a/b)^3=(b/c)^3=(c/d)^3=(a+b+c)^3/(b+c+d)^3(1)
a/b= b/c=c/dsuy ra a^3/b^3=b^3/c^3=c^3/d^3(2)
Áp dụng tính chất .....
a^3/b^3=b^3/c^3=c^3/d^3=a^3+b^3+c^3/b^3+c^3+d^3 (3)
Từ 1,2 và 3 suy ra :a^3+b^3+c^3/b^3+c^3+d^3=(a+b+c)^3/(b+c+d)^3
bài 1: cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
a) CMR: (a+2c)(b+d)=(a+c)(b+2d) \(\left(b,d\ne0\right)\)
b) CMR: (a+c)(b-d)=ab-cd
c) CMR: \(\frac{a}{a-b}=\frac{c}{c-d}\left(a,b,c,d>0;a\ne b,c\ne d\right)\)
bài 2: cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}CMR:\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Cho: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}.CMR:\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
\(Cho\frac{a}{b}=\frac{b}{c}=\frac{c}{d}.cmr\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
cho a,b,c,d là các số dương . CMR :
\(\frac{abc}{\left(a+d\right)\left(b+d\right)\left(c+d\right)}+\frac{bcd}{\left(b+a\right)\left(c+a\right)\left(d+a\right)}+\frac{cda}{\left(a+b\right)\left(c+b\right)\left(d+b\right)}+\frac{dab}{\left(d+c\right)\left(a+c\right)\left(b+c\right)}\ge\frac{1}{2}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
CMR : \(\frac{\left(a+b-c\right)^3}{a}=\frac{\left(b+c-d\right)^3}{d}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b-c}{b+c-d}\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b-c}{b+c-d}\right)^3\)
Mà \(\left(\frac{a}{b}\right)^3=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)
=>\(\left(\frac{a+b-c}{b+c-d}\right)^3=\frac{a}{d}\Rightarrow\frac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}=\frac{a}{d}\Rightarrow\frac{\left(a+b-c\right)^3}{a}=\frac{\left(b+c-d\right)^3}{d}\) (đpcm)
\(cho\frac{a}{b}=\frac{b}{c}=\frac{c}{d}.CMR:\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{c^2}{d^2}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{abc}{bcd}=\frac{a}{d}\)
=> \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
=> Đpcm
Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\frac{abc}{bcd}=\frac{a}{d}\)( theo TC dãy TSBN)
Mà:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)(theo TC dãy TSBN)
=>\(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\left(=\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3\right)\)(đpcm)
\(cho:\frac{a}{b}=\frac{b}{c}=\frac{c}{d}CMR:\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\)
theo t/c của dãy t/s ta có:
a/b=b/c=c/d=a+b+c/b+c+d=(a+b+c/b+c+d)^3=a/b
=>Đpcm