Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phanyenchi
Xem chi tiết
Tsurumaru
6 tháng 6 2016 lúc 0:11

Tam giác ABC có chu vi là 58 cm -> AB + BC + AC = 58 (cm) 

mà AB + BC = 42 (cm) -> 42 + AC = 58 -> AC = 58 - 42 = 16 (cm)

Có BC + AC = 34 (cm) -> BC + 16 = 34 -> BC = 34 - 16 = 18 (cm) 

Có AB + BC = 42 (cm) -> AB + 18 = 42 -> AB = 42 - 18 = 24 (cm)

Meo Meo
Xem chi tiết
Mirai
22 tháng 3 2021 lúc 17:46

undefined

Võ Thị Lên
Xem chi tiết
Vân Sarah
11 tháng 7 2018 lúc 7:45

                         75% = 3/4

Tổng độ dài AB và AC là: 3 + 4  = 7 (phần)

Giá trị 1 phần: 120 : ( 3 + 4 + 5) = 10 (cm)

Cạnh AC: 10 x 3 = 30 (cm)

Cạnh AB: 10 x 4 = 40 (cm)

Cạnh BC: 10 x 5 = 50 ( cm)

DT tam giác ABC:( 30 x 40): 2= 60 (cm2)

Chiều cao tương ứng của cạnh BC: 60 x 2 : 50 = 24

Học Tốt ^-^

zy sociu 2003
Xem chi tiết
Minh Khuê
16 tháng 8 2016 lúc 21:58

bạn kẻ được hình của cả 2 bài rồi đúng ko. mình chỉ trả lời câu hỏi chứ ko vẽ hình đâu bạn nha

Bài 1:

a) xét tam giác ABE và tam giác DBE có: góc BAE = góc BDE (= 90o) ; cạnh BE chung; góc ABE = góc DBE ( do BE là phân giác của góc B)

=> tam giác ABE = tam giác DBE ( trường hợp cạnh huyền góc nhọn)

b) Do tam giác ABE = tam giác DBE ( chứng minh câu a) => AB = BD và AE = ED ( cặp cạnh tương ứng) => BE là trung trực của AD

c) xét tam giác AEF  và tam giác DEC có: AE = DE ( c/m câu b); góc AEF = góc DEC ( đối đỉnh); góc FAE = góc EDC (=90o)

=> tam giác AEF  = tam giác DEC ( trường hợp g.c.g ) => AE = DC     (1)

mặt khác, AB = BD ( c/m câu b)      (2)      => tam giác ABD cân tại B => góc BDA = góc B :2     (3)

từ (1) và (2) => AB + AE = BD + DC hay BE = BC => tam giác BEC cân tại B => góc BCE = góc B : 2     (4)

từ (3) và (4) => góc BDA = góc BCE mà 2 góc này ở vị trí đồng vị so với DC nên AD // FC

Bài 2:

a) xét tam giác ABD và tam giác HBD có: góc BAD = góc BHD (= 90o) ; cạnh BD chung; góc ABD = góc HDB ( do BD là phân giác của góc B) => tam giác ABD =  tam giác HBD => AD = DH ( cặp cạnh tương ứng)

b) do AD = DH ( c/m câu a)           (1)

xét tam giác DHC có góc DHC = 90o => DH < DC ( quan hệ đường vuông góc với đường xiên)    (2)

từ (1) và (2) => AD < DC

c) xét tam giác ADK  và tam giác HDC có: AD = DH ( c/m câu a); góc ADK = góc HDC ( đối đỉnh); góc DAK = góc DHC (=90o)

=> tam giác ADK  = tam giác HDC ( trường hợp g.c.g ) => AK = HC     (3)

mặt khác, AB = BH ( do tam giác ABD =  tam giác HBD)      (4)      

từ (1) và (2) => AB + AK = BH + HC hay BK = BC => tam giác BEC cân tại B 

Xong rồi nha :)

Hoàng Ninh
16 tháng 9 2016 lúc 17:27

chịu 

thông cảm nhé

Lam Thanh Chuyen
6 tháng 2 2017 lúc 15:27

dai lam ngoai kinh nen duoc

Anh Thu
Xem chi tiết

BC=BD+CD

=15+20

=35(cm)

Xét ΔABC có AD là phân giác

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)

=>\(\dfrac{AB}{15}=\dfrac{AC}{20}\)

=>\(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)

=>AB=3k; AC=4k

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(\left(3k\right)^2+\left(4k\right)^2=35^2\)

=>\(25k^2=35^2\)

=>\(k^2=49\)

=>k=7

=>\(AB=3\cdot7=21\left(cm\right);AC=4\cdot7=28\left(cm\right)\)

Akai Haruma
13 tháng 1 lúc 19:30

Lời giải:

Theo tính chất đường phân giác: 

$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$

$\Rightarrow AB=\frac{3}{4}AC$
Theo định lý Pitago:

$AB^2+AC^2=BC^2=(BD+DC)^2=(15+20)^2=35^2$
$\Rightarrow (\frac{3}{4}AC)^2+AC^2=35^2$
$\Rightarrow AC^2.\frac{25}{16}=35^2$
$\Rightarrow AC^2=784\Rightarrow AC=28$ (cm)

$AB=\frac{3}{4}AC=\frac{3}{4}.28=21$ (cm)

Akai Haruma
13 tháng 1 lúc 19:30

Đáp số bạn đưa ra chưa đúng.

Nguyen Tran Phuong Anh
Xem chi tiết
Đợi anh khô nước mắt
Xem chi tiết
Nguyen Hai Dang
15 tháng 2 2016 lúc 19:17

Bai 1:

Ap dung dinh li Py-ta-go vao tam giac AHB ta co:

AH^2+BH^2=AB^2

=>12^2+BH^2=13^2

=>HB=13^2-12^2=25

Tuong tu voi tam giac AHC

=>AC=20

=>BC=25+16=41

Thúy Đặng
Xem chi tiết
Hồng Quang
23 tháng 2 2018 lúc 16:43

Để mình làm bài này cho :))

Ta có : \(\dfrac{GK}{BG}=\dfrac{1}{2};\dfrac{BG}{BK}=\dfrac{2}{3}\)

Do DE // AC nên \(\dfrac{AD}{AB}=\dfrac{EC}{BC}=\dfrac{GK}{BK}=\dfrac{1}{3}\)

\(\Rightarrow\) \(\dfrac{AD+EC}{AB+BC}=\dfrac{1}{3}\)

Vì AD + EC = 16cm và AB + BC = 75 - AC

từ đó ta có \(\dfrac{16}{75-AC}=\dfrac{1}{3}\Rightarrow AC=27\left(cm\right)\)

\(\dfrac{DE}{AC}=\dfrac{2}{3}\) hoặc \(\dfrac{DE}{27}=\dfrac{2}{3}\)

\(\Rightarrow\) \(DE=\dfrac{27.2}{3}=18\left(cm\right)\)

A B C E G K D

Tiểu thư họ Vũ
Xem chi tiết