Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
mynguyenpk
Xem chi tiết
sakura haruko
Xem chi tiết
sakura haruko
Xem chi tiết
0o0 Nhok kawaii 0o0
Xem chi tiết
Trần Thanh Phương
21 tháng 4 2019 lúc 11:09

Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )

Khi đó ta có pt :

\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)

\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)

Vì pt trên đúng với mọi x nên :

+) đặt \(x=1\)

\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)

\(\Leftrightarrow-7+a+b+c=0\)

\(\Leftrightarrow a+b+c=7\)(1)

Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :

\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)

Từ (1) và (2) ta có hệ pt 3 ẩn :

\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)

Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)

Vậy....

addfx
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2023 lúc 9:18

\(f\left(x\right)=2x^4+ax^2+bx+c\)

\(=2x^4-4x^3+4x^3-8x^2+\left(a+8\right)x^2-x\left(2a+16\right)+\left(2a+16+b\right)x-2\left(2a+16+b\right)+4a+32+2b+c\)

\(=\left(x-2\right)\left(2x^3+4x^2+x\left(a+8\right)+2a+16+b\right)+4a+2b+32+c\)

=>\(\dfrac{f\left(x\right)}{x-2}=2x^3+4x^2+x\left(a+8\right)+2a+16+b+\dfrac{4a+2b+32+c}{x-2}\)

f(x) chia hết cho x-2 nên \(4a+2b+32+c=0\)(1)

\(f\left(x\right)=2x^4+ax^2+bx+c\)

\(=2x^4-4x^3+6x^2+4x^3-16x^2+12x+\left(a+10\right)x^2-4x\left(a+10\right)+3a+30+x\left(4a+28+b\right)+c-3a-30\)

\(=\left(x^2-4x+3\right)\left(2x^2+4x+a+10\right)\)+x(4a+28+b)+c-3a-30

f(x) chia cho x2-4x+3 dư -x+2 nên ta có: 

\(\left\{{}\begin{matrix}4a+28+b=-1\\c-3a-30=2\end{matrix}\right.\)(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}4a+2b+32+c=0\\4a+b+28=-1\\c-3a=32\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4a+2b+c=-32\\4a+b=-29\\-3a+c=32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b+c=-3\\-3a+c=32\\4a+b=-29\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+3a=-35\\4a+b=-29\\b+c=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-a=-6\\4a+b=-29\\b+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=-29-4a=-29-4\cdot6=-53\\c=-3-b=-3-\left(-53\right)=50\end{matrix}\right.\)

Big City Boy
Xem chi tiết
Nguyễn Trọng Chiến
24 tháng 2 2021 lúc 21:59

Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)

 Trừ từng vế của (2) cho (3) ta được:

\(\Rightarrow2b=2\Rightarrow b=1\)

Thay b=1 vào lần lượt (1) ,(2),(3) ta được:

\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)

Trừ từng vế của (4) cho (5) ta được:

\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...

Trần Quốc Anh
Xem chi tiết
Xua Tan Hận Thù
Xem chi tiết
Xua Tan Hận Thù
10 tháng 11 2017 lúc 20:14

Chia đa thức cho đa thức,Xác định các hằng số a và b sao cho,x^4 + ax + b chia hết cho x^2 - 4,x^4 + ax^ + bx - 1 chia hết cho x^2 - 1,x^3 + ax + b chia hết cho x^2 + 2x - 2,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Chỉ ý kiến của mk thôi

chưa chắc đúng

Tham khảo nhé

sakura haruko
Xem chi tiết
Đoàn Đức Hà
20 tháng 12 2021 lúc 14:35

\(f\left(x\right)=ax^3+bx+c\)

\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(1\right)=1+5=6\\f\left(-1\right)=-1+5=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-8a-2b+c=0\\a+b+c=6\\-a-b+c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{1}{2}\\c=5\end{cases}}\)

Khách vãng lai đã xóa