Cho x/2=y/3=z/5. Tìm x, y, z biết: x-2y+3z=38
Cho x/2=y/3=z/5 .tìm x,y,z
a) x+ y+ z =30
b) x-2y+3z=38
a) Áp dung TC của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{30}{10}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.2=6\\y=3.3=9\\z=3.5=15\end{cases}}\)
a) x + y + z = 30
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=>\frac{x+y+z}{2+3+5}=\frac{30}{10}\)= 3
Suy ra ta có :
x/2 = 3
y/3 = 3
z/5 = 3
=> x = 2.3 = 6
y = 3.3 = 9
z = 5.3 = 15
Vậy........
~ Còn tiếp....
b, Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-2y+3z}{2-2.3+3.5}=\frac{38}{11}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{38}{11}.2=\frac{76}{11}\\y=\frac{38}{11}.3=\frac{114}{11}\\z=\frac{38}{11}.5=\frac{190}{11}\end{cases}}\)
Vậy ..........................................
Kết luận giúp mình nha :)))
1. Cho: (3x - 2y)/4 = (2z - 4x)/3 = (2y - 3z)/2
Chứng minh x/2 = y/3 = z/4
2. Tìm x,y biết:
3/5 . x = 2/3 . y và x2 - y2 = 38
Bài 3 : Cho x/2=y/3=z/5 . Tìm x,y,z biết : x-2y+3z=22
Bài 4 : Cho 3x=2y;7y=5z . Tìm x,y,z biết :x-y+z=32
Bài 5 : Cho a/b=c/d (a,b,c,d ∈ Q*) CMR : 7a^2+3ab/11a^2-8b^2 = 7c^2+3cd/11a^2-8d^ .
Giúp mik vs mik cần gấp
Bài1: Tìm x biết:
a) 12 : 5 = x : 1,5
b) x/5 = 3/20
c) 4/x = 10/9
d) x/15 = 60/x
Bài 2:Cho x/3=y/5=z/6, tìm x,y,z biết
a) x + y -z=8
b)x-y+z=(-4)
c)x-2y+3z= (-33)
d) x^2 - 4y^2 + 2z^2 = (-475)
\(a,\dfrac{12}{5}=\dfrac{x}{1,5}\Rightarrow x=\dfrac{12\cdot1,5}{5}=3,6\\ b,\dfrac{x}{5}=\dfrac{3}{20}\Rightarrow x=\dfrac{5\cdot3}{20}=\dfrac{3}{4}\\ c,\dfrac{4}{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{4\cdot9}{10}=\dfrac{18}{5}\\ d,\Rightarrow\dfrac{x}{15}=\dfrac{60}{x}\Rightarrow x^2=60\cdot15=900\Rightarrow\left[{}\begin{matrix}x=30\\x=-30\end{matrix}\right.\\ 2,\)
a, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{8}{2}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=20\\z=24\end{matrix}\right.\)
b, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x-y+z}{3-5+6}=\dfrac{-4}{4}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-6\end{matrix}\right.\)
c, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{2y}{10}=\dfrac{3z}{18}=\dfrac{x-2y+3z}{3-10+18}=\dfrac{-33}{11}=-3\\ \Rightarrow\left\{{}\begin{matrix}x=-9\\y=-15\\z=-18\end{matrix}\right.\)
d, Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=k\Rightarrow x=3k;y=5k;z=6k\)
\(x^2-4y^2+2z^2=-475\\ \Rightarrow9k^2-100k^2+72z^2=-475\\ \Rightarrow-19k^2=-475\\ \Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=15;y=25;z=30\\x=-15;y=-25;z=-30\end{matrix}\right.\)
Tìm x, y, z biết x : y : z = 3 : 4 : 5 và 2x^2 + 2y^2 - 3z^2 = -100
`x : y : z= 3:4:5`
`=> x/3 = y/4 = z/5 <=> x^2/9 = y^2/16 = z^2/25`
Áp dụng dãy tỉ số bằng nhau:
`x^2/9 = y^2/16 = z^2/25 = (2x^2 + 2y^2 - 3z^2)/(18 + 32 - 75) = -100/-25 = 4`.
`=> {(x^2/9 = 4 => x = +-6), (y^2/16 =4 <=> x = +-8), (z^2/25 = 4 => z = +-10):}`
Vậy ...
1, Tìm x, y, z biết x/2=y/4=z/5 và 2x²+2y²-3z²=-100
2, Tìm x, y, z biết x/2=y/3; x/4=z/9 và x³+y³+z³=-1009
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
Tìm X biết :
a} |x-1/3| + 4/5 = [{-3,2} + 2/5]
b} x/2 = y/3 = z/4 và x + 2y -3z = 20
c} x-1-/2 = y-2/3 = z-3/4 và x - 2y + 3z
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left[\left(-3,2\right)+\frac{2}{5}\right]\)
\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left[-\frac{3}{2}+\frac{2}{5}\right]\)
\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=-\frac{11}{10}\)
\(\Rightarrow\left|x-\frac{1}{3}\right|=-\frac{11}{10}-\frac{4}{5}\)
\(\Rightarrow\left|x-\frac{1}{3}\right|=-\frac{19}{10}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{19}{10}\\x-\frac{1}{3}=-\frac{19}{10}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{67}{30}\\x=-\frac{47}{30}\end{cases}}\)
Tìm x,y,z thỏa x(x+2y+3z)=-5; y(x+2y+3z)=27 ; z(x+2y+3z)=5
Ta có: \(\left\{{}\begin{matrix}x\left(x+2y+3z\right)=-5\\y\left(x+2y+3z\right)=27\\z\left(x+2y+3z\right)=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-5}=x+2y+3z\\\dfrac{y}{27}=x+2y+3z\\\dfrac{z}{5}=x+2y+3z\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{-5}=\dfrac{y}{27}=\dfrac{z}{5}\Rightarrow\left\{{}\begin{matrix}y=\dfrac{-27}{5}x\\z=-x\end{matrix}\right.\)
Ta có: \(x\left(x+2y+3z\right)=-5\Rightarrow x\left(x+2.\dfrac{-27}{5}x-3x\right)=-5\)
\(\Rightarrow\dfrac{-64}{5}x^2=-5\Rightarrow x^2=\dfrac{25}{64}\Rightarrow x=\dfrac{5}{8}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=-\dfrac{27}{5}x=-\dfrac{27}{8}\\z=-x=-\dfrac{5}{8}\end{matrix}\right.\)