Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{y}{5}\)\(\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{2-6+15}=\dfrac{38}{11}\)
\(\dfrac{x}{2}=\dfrac{38}{11}\Rightarrow x=\dfrac{76}{11}\)
\(\dfrac{y}{3}=\dfrac{38}{11}\Rightarrow y=\dfrac{114}{11}\)
\(\dfrac{z}{5}=\dfrac{38}{11}\Rightarrow z=\dfrac{190}{11}\)
Giải:
Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2.3+3.5}=\dfrac{38}{11}\)
Suy ra:
\(\dfrac{x}{2}=\dfrac{38}{11}\Rightarrow x=\dfrac{38.2}{11}=\dfrac{76}{11}\)
\(\dfrac{y}{3}=\dfrac{38}{11}\Rightarrow y=\dfrac{38.3}{11}=\dfrac{114}{11}\)
\(\dfrac{z}{5}=\dfrac{38}{11}\Rightarrow z=\dfrac{38.5}{11}=\dfrac{190}{11}\)
a) Áp dung TC của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{-2y}{-6}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{2-3+15}=\dfrac{x-2y+3z}{14}=\dfrac{38}{14}=\dfrac{19}{7}\)
Vậy\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{19}{7}\Leftrightarrow x=\dfrac{38}{7}\\\dfrac{y}{3}=\dfrac{19}{7}\Leftrightarrow y=\dfrac{57}{7}\\\dfrac{z}{5}=\dfrac{19}{7}\Leftrightarrow x=\dfrac{95}{7}\end{matrix}\right.\)
Kết luận:..
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
nên \(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{2-6+15}=\dfrac{38}{19}=2\)
Do đó: x=4; y=6; z=10