Tam giác ABC vuông tại a. B= 750. Kẻ BH vông góc với AC. Chứng minh BH = AB : 2
cho tam giác ABC cân tại A có ; góc B =50 độ
a, tính các góc còn lại của tam giác ABC
b, kẻ BH vuông góc với AC tại H
kẻ CK vuông góc với AB tại H . chứng minh BH=CK
c, gọi O là giao diểm của BH và CK . chứng minh tam giác OBC cân
a ) Vì \(\Delta ABC\) cân tại A (gt)
\(\Rightarrow\widehat{B}=\widehat{C}=50^o\)
Ta có : \(\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)=180^o-\left(50^o+50^o\right)=180^o-100^o=80^o\)
b ) Xét \(\Delta KBC\) và \(\Delta HCB\) có :
\(\widehat{BKC}=\widehat{CHB}=90^o\)
BC là cạnh chung
\(\widehat{C}=\widehat{B}\left(cmt\right)\)
\(\Rightarrow\Delta KBC=\Delta HCB\) ( cạnh huyền - góc nhọn )
\(\Rightarrow KC=BH\)
C ) Vì \(\Delta KBC=\Delta HCB\left(cmt\right)\)
\(\Rightarrow\widehat{BCK}=\widehat{CBH}\)
\(\Rightarrow\Delta OBC\) cân tại O ( đpcm)
ĐỀ ĐỄ THẾ NÀY MÀ KO LÀM ĐC...
cho tam giác ABC cân tại A có ; góc B =50 độ
a, tính các góc còn lại của tam giác ABC
b, kẻ BH vuông góc với AC tại H
kẻ CK vuông góc với AB tại H . chứng minh BH=CK
c, gọi O là giao diểm của BH và CK . chứng minh tam giác OBC cân
a)Vì: ΔABC cân tại A(gt)
=> \(\widehat{B}=\widehat{C}=50^o\)
Có: \(\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)=180^o-\left(50^o+50^o\right)=180^o-100^0=80^o\)
b)Xét ΔKBC và ΔHCB có:
\(\widehat{BKC}=\widehat{CHB}=90^o\)
BC: cạnh chung
\(\widehat{C}=\widehat{B}\left(cmt\right)\)
=> ΔKBC=ΔHCB(cạnh huyền-góc nhọn)
=>KC=BH
c)Vì: ΔKBC=ΔHCB(cmt)
=> \(\widehat{BCK}=\widehat{CBH}\)
=>ΔOBC cân tại O
Mk k vẽ hình nữa nha!!!
a/ Vì ΔABC cân tại A(gt) => \(\widehat{B}=\widehat{C}=50^o\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
hay \(\widehat{A}+50^o+50^o=180^o\Rightarrow\widehat{A}=180^o-50^o-50^o=80^o\)
b/ Xét 2 Δ vuông: ΔBKC và ΔCHB có:
BC: Cạnh chung
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
=> ΔBKC = ΔCHB (cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng) (đpcm)
c/ Vì ΔBKC = ΔCHB (ý b)
=> \(\widehat{HBC}=\widehat{KCB}\) (2 góc tương ứng)
=> ΔOBC cân tại O (đpcm)
2, Cho tam giác ABC, kẻ BH vuông góc với AC ( A thuộc AC ); CK vuông góc với AB ( K thuộc AB ). Bt BH vuông góc với CK . Chứng minh tam giác ABC cân
Cho tam giác ABC cân tại A .Kẻ BH vuông góc với AC; CK vuông góc với AB (H thuộc AC; K thuộc AB) a)Chứng minh tam giác AKH là tam giác cân b)Gọi I là giao của BH và CK;AI cắt BC tại M.Chứng minh rằng IM là phân giác của góc BIC c)Chứng minh :HK // BC
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
=>ΔAHB=ΔAKC
=>AH=AK
b:
Xét ΔABC có
BH,CK là đường cao
BH cắt CK tại I
=>I là trực tâm
=>AI vuông góc BC tại M
Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có
BC chung
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác
c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC
Cho tam giác ABC cân tại A. Từ B kẻ BH vuông góc với AC ( H thuộc AC ), từ C kẻ CK vuông góc với AB (K thuộc AB).
a) chứng minh tam giác AHB = tam giác AKC
b) Biết AB=10cm, BH=8cm. Tính độ dài AH?
c) Gọi E là giao điểm của BH và CK. AE là tia phân giác góc A
( ghi GT và KL)
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
b: AH=căn 10^2-8^2=6cm
c: Xét ΔAKE vuông tại K và ΔAHE vuông tại H có
AE chung
AK=AH
=>ΔAKE=ΔAHE
=>góc KAE=góc HAE
=>AE là phân giác của góc BAC
Cho tam giác ABC cân tại A có AB = AC = 5cm, kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh: BH = HC và góc BAH = góc CAH
b) Tính độ dài BH biết AH = 4cm.
c) Kẻ HD vuông góc với AB (D thuộc AB), kẻ EH vuông góc với AC (E thuộc AC). Tam giác ADE là tam giác gì ? Vì sao ?
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
Cho tam giác ABC cân tại A, kẻ BH vuông góc với AC. Gọi D là một điểm thuộc cạch đáy BC, kẻ BH vuông góc vơí AC, DF vuông góc với AB. Chứng minh DE+DF=BH.
Cho tam giác ABC nhọn ( AB > AC ) có đường phân giác AD. Kẻ BH vuông góc với AD tại H, CK vuông góc với AD tại K.
a) Chứng minh tam giác BHD đồng dạng tam giác CKD
b) Chứng minh AB.AK=AC.AH
c) Chứng minh DH/DK=BH/CK=AB/AC
Cho tam giác ABC cân tại A, có góc A nhọn. Lấy M là 1 điểm thuộc BC. Kẻ MD, ME lần lượt vuông góc với AB, AC ( D thuộc AB, E thộc AC) và kẻ BH vuông góc AC ( H thuộc AC), MK vuông góc với BH (K thuộc BH).
a) Chứng minh: Tam giác BKM = tam giác MDB.
b) CM: Tam giác KHM = tam giác EHM.
c) CM:MD+ME=BH.