tính giá trị của biểu thức A=x^5+2x^4+3x^3+4x^2+5x+2017 tại x=(căn2) - 1
cho hai đa thức M(x)=3x^4-2x^+5x^2-4x+1
N(x)=-3x^4+2x^3-3x^2+7x+5.
a)tính P(x)=M(X)+N(x)
b)tính giá trị cua biểu của P(x)tại x=-2
Sửa đa thức M(x) = 3x4 - 2x3 + 5x2 - 4x + 1
\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=3x^4-2x^3+5x^2-4x+1-3x^4+2x^3-3x^2+7x+5\)
\(=2x^2+3x+6\)
b, Tại x = -x
< = > 2x = 0 <=> x = 0 thì giá trị của biểu thức P ( x ) = 6
tính giá trị của biểu thức :
A=3x^2+2x-1 tại trị tuyệt đối của x = 1phần 3
B=2x^+5x+4 phần x^2 -4x+3 vói x=-1
giúp mình vs ạ
b) Thay x=-1 vào biểu thức \(B=\dfrac{2x^2+5x+4}{x^2-4x+3}\), ta được:
\(B=\dfrac{2\cdot\left(-1\right)^2+5\cdot\left(-1\right)+4}{\left(-1\right)^2-4\cdot\left(-1\right)+3}=\dfrac{2\cdot1-5+4}{1+4+3}=\dfrac{1}{8}\)
Vậy: Khi x=-1 thì \(B=\dfrac{1}{8}\)
Ta có:
|x| = \(\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{1}{3};x=-\dfrac{1}{3}\)
Cho x = \(\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\). Tính giá trị biểu thức:
\(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-2\sqrt{x}}{\sqrt{2x^2}+2x}\right)^{2017}\) tại giá trị x đã cho
cho hai đa thức m(x)=3x^4-2x^3+5x^2-4x+1
n(x)=-3x^4+2x^3-3x^2+7x+5
a)tính p(x)=m(X)+n(x)
b)tính giá trị của p(x)tại x=-2
a, M(\(x\) )+N(\(x\)) = 3\(x^4\) - 2\(x\)3 + 5\(x^2\) - \(4x\)+ 1 + ( -3\(x^4\) + 2\(x^3\)- 3\(x^2\)+ 7\(x\) + 5)
M(\(x\)) + N(\(x\)) = ( 3\(x^4\)- 3\(x^4\))+( -2\(x^3\) + 2\(x^3\))+(5\(x^2\) - 3\(x^2\))+( 7\(x-4x\)) +(1+5)
M(\(x\)) + N(\(x\)) = 0 + 0 + 2\(x^2\) + 3\(x\) + 6
M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6
b, P(\(x\)) = M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6
P(-2) = 2.(-2)2 + 3.(-2) + 6 = 8 - 6 + 6 = 8
a)Tính giá trị biểu thức A= 2x³ – 3x² + 5x –1 tại x= -2 b) tính nghiệm của đa thức A(x) = x–7 c) cho hai đa thức A(x) = 1 + 3x³ – 5x² + x + 4x⁵ B(x)= 3x³ – x⁴ + 3x² + 6x⁵ – 5 • Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến • Tính A(x) + B(x) d) cho góc nhọn xOy. Gọi M là một điểm thuộc tia phân giác Oz của góc xOy. Vẽ AM vuông góc với Ox (A thuộc Ox), MB vuông góc với Oy (B thuộc Oy) Chứng minh: - MA= MB - đường thẳng BM cắt Ox tại H. Đường thẳng AM cắt Oy tại K. Chứng minh tam giác AMH = tam giác BMK - gọi I là giao điểm của tia Oz và HK. chứng minh OI vuông góc với HK - cho góc xOy = 60⁰. Chứng minh tâm giác OHK đều e) cho tam giác ABC cân tại A có AB = 15cm, BC= 18cm. Vẽ đường phân giác AH của góc BAC ( H thuộc BC). Chứng minh: - tam giác ABH = tam giác ACH - vẽ trung tuyến BM ( M thuộc AC ) cắt AH tại G. Chứng minh G là trọng tâm của tam giác ABC - tính độ dài AH. Từ đó tính độ dài AH - từ H vẽ HK// AC. Chứng minh C,G,K thẳng hàng
e:
Xét ΔABH và ΔACH có
AB=AC
góc BAH=góc CAH
AH chung
=>ΔABH=ΔACH
Xét ΔABC có
AH,BM là trung tuyến
AH cắt BM tại G
=>G là trọng tâm
BH=CH=9cm
=>AH=căn 15^2-9^2=12cm
Xét ΔABC có
H là trung điểm của BC
HK//AC
=>K là trug điểm của AB
=>C,G,K thẳng hàng
d: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
góc AOM=góc BOM
=>ΔOAM=ΔOBM
=>MA=MB
Xét ΔMAH vuông tại A và ΔMBK vuông tại B có
MA=MB
góc AMH=góc BMK
=>ΔMAH=ΔMBK
OA+AH=OH
OB+BK=OK
mà OA=OB và AH=BK
nên OH=OK
=>ΔOHK cân tại O
mà OI là phân giác
nên OI vuông góc HK
b: A(x)=0
=>x-7=0
=>x=7
1) chứng minh giá trị của biểu thức A phụ thuộc vào biến x
A=(3x-5)(2x+11)-(2x+3)(3x+7)
2) tìm số thực a để x3 - 3x2 + 5x +a chia hết cho x -2
3)tìm giá trị nhỏ nhất của biểu thức :A = 4x2 - 8x +2017
Câu2: Chứng minh giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến.
a) -2x(x-5)+3(x-1)+2x^2-13x
b)-x^2(2x^2 - x - 3)+x(x^2+2x^3+3)-3x(x^2+x)+x^3-3x
Câu3: Tìm x, biết
a) 5x^2-5x(x-5)=10x-35.
b) 4x(x - 5) -7x(x - 4) + 3x^2 = 4 - x
Câu4: Tính giá trị biểu thức sau:
a) A=2x(3x^2-2x)+3x^2(1-2x)+x^2-7 với x = -2
b) B=x^5-15x^4+16x^3-29x^2+13x với x =14
Câu 2:
a) \(-2x\left(x-5\right)+3\left(x-1\right)+2x^2-13x\)
\(=-2x^2+10x+3x-3+2x^2-13x\)
\(=\left(-2x^2+2x^2\right)+\left(10x+3x-13x\right)-3\)
\(=0+0-3\)
\(=-3\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
b) \(-x^2\left(2x^2-x-3\right)+x\left(x^2+2x^3+3\right)-3x\left(x^2+x\right)+x^3-3x\)
\(=-2x^4+x^3+3x^2+x^3+2x^4+3x-3x^3-3x^2+x^3-3x\)
\(=\left(-2x^4+2x^4\right)+\left(x^3+x^3-3x^3+x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)\)
\(=0+0+0+0\)
\(=0\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
Câu 4:
a) \(A=2x\left(3x^2-2x\right)+3x^2\left(1-2x\right)+x^2-7\)
\(A=6x^3-4x^2+3x^2-6x^3+x^2-7\)
\(A=-7\)
Thay \(x=-2\) vào biểu thức A ta có:
\(A=-7\)
Vậy giá trị của biểu thức A là -7 tại \(x=-2\)
b) \(B=x^5-15x^4+16x^3-29x^2+13x\)
\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)
\(B=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(B=-x\)
Thay \(x=14\) vào biểu thức B ta được:
\(B=-14\)
Vậy giá trị của biểu thức B tại \(x=14\) là -14
Câu 3:
a) \(5x^2-5x\left(x-5\right)=10x-35\)
\(\Leftrightarrow5x^2-5x^2+25x=10x-35\)
\(\Leftrightarrow25x=10x+35\)
\(\Leftrightarrow15x=35\)
\(\Leftrightarrow x=\dfrac{35}{15}=\dfrac{7}{3}\)
Vậy nghiệm của phương trình là \(x=\dfrac{7}{3}\)
b) \(4x\left(x-5\right)-7x\left(x-4\right)+3x^2=4-x\)
\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=4-x\)
\(\Leftrightarrow8x=4-x\)
\(\Leftrightarrow9x=4\)
\(x=\dfrac{4}{9}\)
Vậy nghiệm của phương trình là \(x=\dfrac{9}{4}\)
Chứng minh giá trị của biểu thức A không phụ thuộc vào biến x
1) A= (3x-5)(2x+11)-(2x+3)(3x+7)
2) tìm số thực a để x3 - 3x2 + 5x +a chia hết cho x -2
3) tìm giá trị nhỏ nhất của biểu thức A = 4x2 -8x +2017
Chứng minh giá trị của biểu thức A không phụ thuộc vào biến x
1) A= (3x-5)(2x+11)-(2x+3)(3x+7)
A = 6x2 -10x +33x -55 - (6x2 +9x +14x +21)
A = 6x2 -10x +33x -55 - 6x2 - 9x - 14x - 21
A = -76
Vậy A không phụ thuộc vào biến x
2) tìm số nguyên a hay số thực bạn xem lại đầu bài nhé
3) tìm giá trị nhỏ nhất của biểu thức A = 4x2 -8x +2017
A = 4x2 -8x +2017 = (2x)2 -2.2x.2 +22 +2015 = (2x-2)2 +2015
Ta có (2x-2)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là bằng 0
vậy A = (2x-2)2 +2015 nhỏ nhất là bằng 2015 khi và chỉ khi 2x-2 = 0 <=> x = 1
1) Chứng minh giá trị của biểu thức A không phụ thuộc vào biến x
A=(3x-5)(2x+11)-(2x+3)(3x+7)
2)tìm số thực a để x3 - 3x2 + 5x +a chia hết cho x-2
3)tìm giá trị nhỏ nhất của biểu thức A=4x2 - 8x +2017