tìm tất cả các số nguyên tố thỏa mãn 3p+1 là số chính phương
Tìm tất cả các số nguyên tố p thỏa mãn 3p+4 là số chính phương
Đặt \(3p+4=k^2\left(k\ge4\right)\)
\(\Leftrightarrow k^2-4=3p\)
\(\Leftrightarrow\left(k-2\right)\left(k+2\right)=3p\)
Ta thấy \(0< k-2< k+2\) nên có 2TH:
TH1: \(\left\{{}\begin{matrix}k-2=1\\k+2=3p\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=3\\3p=5\end{matrix}\right.\), vô lí.
TH2: \(\left\{{}\begin{matrix}k-2=3\\k+2=p\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=5\\p=7\end{matrix}\right.\), thỏa mãn.
Vậy \(p=7\) là số nguyên tố duy nhất thỏa ycbt.
Tìm tất cả các số nguyên tố p thỏa mãn: \(3p^3-3p+1\) là số chính phương.
Tìm tất cả các số nguyên dương thỏa mãn 2n2+3n+1 là số chính phương và n+5 là số nguyên tố
Tìm tất cả các số nguyên tố p sao cho \(3p^3-3p+1\) là số chính phương
1. CHo số nguyên tố p thỏa mãn p+6 cũng là số nguyên tố . Chứng minh \(p^2+2021\) là hợp số
2.Tìm tất cả các số tự nhiên a để \(a^2+3a\) là số chính phương
1.
\(p=2\Rightarrow p+6=8\) ko phải SNT (ktm)
\(\Rightarrow p>2\Rightarrow p\) lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p^2+2021\) luôn là 1 số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số
2.
\(a^2+3a=k^2\Rightarrow4a^2+12a=4k^2\)
\(\Rightarrow4a^2+12a+9=4k^2+9\Rightarrow\left(2a+3\right)^2=\left(2k\right)^2+9\)
\(\Rightarrow\left(2a+3-2k\right)\left(2a+3+2k\right)=9\)
\(\Leftrightarrow...\)
tìm tất cả các cặp số nguyên tố(p;q) thỏa mãn:3p^2+20q=2015
Tìm tất cả các số nguyên tố p thỏa mãn
a,p+81 là số chính phương
b,5p+1 là số chính phương
Bài 2. Tìm tất cả các số nguyên tố a, b, c thỏa mãn a+b+c+6 là một số chính phương không chia hết cho 3 và ab+bc+ca+12a+12b+12c−30 là một số chính phương.
Tìm tất cả các số nguyên dương k thỏa mãn k và 3k + 1 đều là các số chính phương.
Sau khi thử bằng pascal thì em thấy bài này hình như có vô số nghiệm (Chắc là sai đề). Nhưng nếu ai tìm được công thức tổng quát của k thì hay biết mấy.