Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Võ Văn Hùng
Xem chi tiết
Xuan Thuc
20 tháng 12 2016 lúc 11:05

1

Nguyễn Tấn Tài
17 tháng 1 2017 lúc 17:48

Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)

Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1

Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1

Chiêu Đoan Phạm
26 tháng 12 2016 lúc 20:37

1

Võ Thị KimThoa
Xem chi tiết
dam cong tian
17 tháng 3 2017 lúc 20:59

4036

Tống Hiếu
17 tháng 3 2017 lúc 21:06

4036

Võ Thị KimThoa
17 tháng 3 2017 lúc 21:24

dam cong tian Làm giúp đi mk bó tay cái dạng này !! -_-

Kim Lữ Nguyễn
Xem chi tiết
Thanh Nguyenthi
Xem chi tiết
Jeong Soo In
13 tháng 3 2020 lúc 9:16

Tìm số dư khi chia đa thức \(x^{2018}-x^{2017}+17x+4\) cho \(x+1\).

Giải: Định lý Bê-du : số dư trong phép chia đa thức f(x) cho nhị thức x - a đúng bàng f(a).

Hệ quả: Nếu a là nghiệm của đa thức f(x) thì f(x) chia hết cho x-a.

(Bạn không nhất thiết phải nêu định lí trong bài làm, mình chỉ nêu ra cụ thể cho bạn hiểu)

Áp dụng định lí Bê-du, ta có:

f(a) = f(-1) = (-1)2018 - (-1)2017 + 17.(-1) + 4

= 1 - 1 - 17 + 4 = -13

Vậy số dư trong phép chia đa thức \(x^{2018}-x^{2017}+17x+4\) cho \(x+1\)

là -13.

Chúc bạn học tốt@@

Khách vãng lai đã xóa
Vũ Hoàng Tín
Xem chi tiết
Lưu Hiền
Xem chi tiết
Nguyễn Anh Duy
6 tháng 11 2016 lúc 9:54

Hỏi đáp Toán

Chữ mình hơi xấu, thông cảm !!!! :3

w1daniel
Xem chi tiết
Nguyễn Linh Chi
6 tháng 5 2020 lúc 16:29

Khi f( x) : ( x - 2 ) ( x - 3) thì còn đa thức dư vì ( x - 2 ) ( x - 3 ) có bậc cao nhất là 2 

=> đa thức dư có bậc cao nhất là 1 

=> G/s: đa thức dư là: r(x) = a x + b 

Ta có: f ( x ) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + ax + b 

Vì f ( x ) chia ( x - 2 ) dư 2016 

=> f ( 2 ) = 2016   => a.2 + b = 2016 (1) 

Vì f(x ) chia ( x - 3 ) dư 2017 

=> f ( 3) = 2017 => a.3 + b  = 2017 (2) 

Từ (1) ; (2) => a = 1; b = 2014 

=> Đa thức f(x) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + x + 2014

và đa thức dư là: x + 2014

Khách vãng lai đã xóa
Chính Trần Thân
Xem chi tiết
Đinh Đức Hùng
4 tháng 8 2017 lúc 20:10

\(P\left(x\right)=x^{2017}+x^2+1\)

\(=\left(x^{2017}-x\right)+\left(x^2+x+1\right)\)

\(=x\left(x^{2016}-1\right)+\left(x^2+x+1\right)\)

\(=x\left[\left(x^3\right)^{2016}-1\right]+\left(x^2+x+1\right)\)

\(=x\left(x^3-1\right)A+\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)A+\left(x^2+x+1\right)\)

\(A=\left(x^2+x+1\right)\left[x\left(x-1\right)A+1\right]⋮x^2+x+1\) (đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 5 2019 lúc 4:13